Density Estimation and Smoothing

Density Estimation
e Suppose we have a random sample X, ...,X, from a population with
density f.
e Nonparametric density estimation is useful if we

— want to explore the data without a specific parametric model

— want to assess the fit of a parametric model

— want a compromise between a parametric and a fully non-parametric
approach

e A simple method for estimating f at a point x:

~ no. of X; in [x — h,x + A
Jalx) = 2hn

for some small value of A

e This estimator has bias

~ 1

Bias(f,(x)) = %Ph(x) — f(x)
and variance
Var(7 (o)) = PG 2 i)

4h?n
with
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e If f is continuous at x and f(x) > 0, thenas h — 0

— the bias tends to zero;

— the variance tends to infinity.

e Choosing a good value of 4 involves a variance-bias tradeoff.
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Kernel Density Estimation

e The estimator f,(x) can be written as

A= 5 2k (57)
L

1

with

K(u):{l/z if |u| < 1

0 otherwise

e Other kernel functions K can be used; usually

— K is a density function
— K has mean zero

— K has positive, finite variance 612{
Often K is symmetric.

e Common choices of K:

K(u) Range Name

1/2 lu| <1 Uniform, Boxcar

Gaussian
— |u| lu| <1 Triangular

2)2 |u| <1 Biweight

—u?) |u| <1 Epanechnikov

Tierney
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Mean Square Error for Kernel Density Estimators

e The bias and variance of a kernel density estimator are of the form

Bias(f,(x)) = w +O(h")
Var(f,(x)) = LXK (le’;fK) +o (%)

with
R(g) = / g(x)*dx
if h — 0 and nh — o and f is reasonable.
e The pointwise asymptotic mean square error is

JORK) | K ohf"(x)

AMSE(f,(x)) = - .

and the asymptotic mean integrated square error is

R(K) | H*G{R(f")

AMISE(f,,) = s 7

e The resulting asymptotically optimal bandwidths /& are

i) = (L0 s

of f" ()
1/5
, _( R(K) > P s
0— 4 " n
oxR(f")
with optimal AMSE and AMISE

AMSEo (7,(x)) = 2 (0 fIR(K)) /1" (x)2 54

AMISEO(]/”;) — 2(GKR(K))4/5R(f//)1/5n—4/5
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Choosing a Bandwidth

e One way to chose a bandwidth is to target a particular family, such as a
Gaussian f:

— The optimal bandwidth for minimizing AMISE when f is Gaussian
and K 1s Gaussian
ho = 1.0590n'/3

— o can be estimated using S or the interquartile range
— The default for density in Ris

0.9 x min($,IQR/1.34)n~!/3
based on a suggestion of Silverman (1986, pp 45-47).

e This can often serve as a reasonable starting point.

e It does not adapt to information in the data that suggests departures from
normality.

e So-called plug-in methods estimate R(f”') to obtain
1/5
}l\ = L/K-)\ n—1/5
GI%R(f”)

e The Sheagler-J ones method uses a differen/t\ bandwidth (and kernel?) to
estimate f and then estimates R(f”) by R(f").

e Specifying bw="SJ" in R’s density uses the Sheather-Jones method.
There are two variants:

— SJ-dpi: direct plug-in
— SJ-ste: solve the equation

The default for bw="SJ" is ste.
e Other approaches based on leave-one-out cross-validation are available.

e Many of these are available as options in R’s density and/or other
density estimation functions available in R packages.

e Variable bandwidth approaches can be based on pilot estimates of the
density produced with simpler fixed bandwidth rules.
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Example: Durations of Eruptions of Old Faithful

e Based on an example in Venables and Ripley (2002).

e Durations, in minutes, of 299 consecutive eruptions of Old Faithful were
recorded.

e The data are available as data set geyser in package MASS.

e Some density estimates are produced by

library (MASS)

data (geyser)

truehist (geyserSduration, nbin=25, col="1ightgrey")

lines (density (geyser$duration))

lines (density (geyser$duration,bw="SJ"), col="red")
lines (density (geyser$duration,bw="3SJ-dpi"), col="blue")

1.0

0.8

0.2

0.0

I T T T 1
1 2 3 4 5

geyser$duration

e Animation can be a useful way of understanding the effect of smoothing
parameter choice. See files tkdens.R, shinydens.R,and geyser.R
in
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http://www.stat.uiowa.edu/~1luke/classes/
STAT7400/examples/

Also

http://www.stat.uiowa.edu/~1luke/classes/
STAT7400/examples/smoothex.Rmd


http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd
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Issues and Notes

e Kernel methods do not work well at boundaries of bounded regions.

e Transforming to unbounded regions is often a good alternative.

e Variability can be assessed by asymptotic methods or by bootstrapping.
e A crude MCMC bootstrap animation:

g <- geyserSduration

for (i in 1:1000) {
gl[sample (299,1)] <- geyserS$Sduration[sample (299,1)]
plot (density (g, bw="SJ"),ylim=c(0,1.2),x1lim=c(0,6))
Sys.sleep(1/30)

}

e Computation is often done with equally spaced bins and fast Fourier
transforms.

e Methods that adjust bandwidth locally can be used.

e Some of these methods are based on nearest-neighbor fits and local poly-
nomial fits.

e Spline based methods can be used on the log scale; the logspline
package implements one approach.
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Density Estimation in Higher Dimensions

e Kernel density estimation can in principle be used in any number of di-
mensions.

e Usually a d-dimensional kernel K; of the product form

d
:HlKl(u)

1s used.

e The kernel density estimate is then

~

il( (x—x;))

1 1

n)C

T n det

for some matrix H.

e Suppose H = hA where det(A) = 1. The asymptotic mean integrated
square error is of the form

R(K)

AMISE =
nhd

h4
- / (trace(AAT V2 £ (x)))2dx
and therefore the optimal bandwidth and AMISE are of the form

hO _ O(n—l/(d+4))
AMISE = O(n~4/(d+4))
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e Convergence is very slow if d is more than 2 or 3 since most of higher
dimensional space will be empty—this is known as the curse of dimen-
sionality.

e Density estimates in two dimensions can be visualized using perspective
plots, surface plots, image plots, and contour plots.

e Higher dimensional estimates can often only be visualized by condition-
ing, or slicing.

e The kde2d function in package MASS provides two-dimensional kernel
density estimates; an alternative is bkde2D in package KernSmooth.

e The kde3d function in the mi sc3d package provides three-dimensional
kernel density estimates.

10
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Example: Eruptions of Old Faithful

e In addition to duration times, waiting times, in minutes, until the follow-
ing eruption were recorded.

e The duration of an eruption can be used to predict the waiting time until
the next eruption.

e A modified data frame containing the previous duration is constructed by

geyserz2<-data.frame (as.data.frame (geyser[-1,1),
pduration=geyser$duration[-299])

e Estimates of the joint density of previous eruption duration and waiting
time are computed by

kdl <- with(geyser2,

kde2d (pduration,waiting,n=50, lims=c(0.5,6,40,110)))
contour (kdl, col="grey", xlab="Previous Duration", ylab="waiting")
with (geyser2, points (pduration,waiting,col="blue"))
kd2 <- with(geyser2,

kde2d (pduration,waiting, n=50, 1ims=c(0.5,6,40,110),

h=c (width.SJ (pduration) ,width.SJ(waiting))))

contour (kd2, xlab="Previous Duration", ylab="waiting")

Rounding of some durations to 2 and 4 minutes can be seen.
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11
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Visualizing Density Estimates

Some examples are given in geyser.R and kd3.R in

http://www.stat.uiowa.edu/~1luke/classes/STAT7400/
examples/

e Animation can be a useful way of understanding the effect of smoothing
parameter choice.

e Bootstrap animation can help in visualizing uncertainty.

e For 2D estimates, options include

— perspective plots
— contour plots

— image plots, with or without contours
e For 3D estimates contour plots are the main option

e Example: Data and contours for mixture of three trivariate normals and
two bandwidths

BW =0.2 BW =0.5

12


http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Kernel Smoothing and Local Regression

e A simple non-parametric regression model is
Y =m(x;) + &
with m a smooth mean function.

e A kernel density estimator of the conditional density f(y|x) is

S EK (K () 1EK (50K ()

]/[;\1()’|X) - X—x; -7 X—X;
i LK (55) ho XLK(5Y)
e Assuming K has mean zero, an estimate of the conditional mean is
_ - LK (51) JyiK (5) dy
mn(x) - /yfn(y’x)dy — X—X;
LK (%57)
K (=X .
— M — Zwi(x)yi

LK (5%)
This i1s the Nadaraya-Watson estimator.

e This estimator can also be viewed as the result of a locally constant fit:
my(x) is the value By that minimizes

Y wi(x) (i — Bo)*
e Higher degree local polynomial estimators estimate m(x) by minimizing
Y wilx) (i — Bo— Br(x—x;) — -+ = Bplx—x;)P)?

e (dd values of p have advantages, and p = 1, local linear fitting, generally
works well.

e Local cubic fits, p = 3, are also used.

e Problems exist near the boundary; these tend to be worse for higher de-
gree fits.

13



Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

e Bandwidth can be chosen globally or locally.

e A common local choice uses a fraction of nearest neighbors in the x
direction.

e Automatic choices can use estimates of o and function roughness and
plug in to asymptotic approximate mean square errors.

e Cross-validation can also be used; it often undersmooths.
e Autocorrelation creates an identifiability problem.
e Software available in R includes

— ksmooth for compatibility with S (but much faster).

— locpoly for fitting and dpi 11 for bandwidth selection in package
KernSmooth.

— lowess and loess for nearest neighbor based methods; also try
to robustify.

— supsmu, Friedman’s super smoother, a very fast smoother.

— package locfit on CRAN

All of these are also available for R; some are available as stand-alone
code.

14
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Spline Smoothing

e Given data (x1,y1),..., (Xs,yn) With x; € [a,b] one way to fit a smooth
mean function is to choose m to minimize

b
S(m, A) = Y (i — m(x:))* + A / " (u)du

The term A [”m” (u)2du is a roughness penalty.

e Among all twice continuously differentiable functions on [a,b] this is
minimized by a natural cubic spline with knots at the x;. This minimizer
is called a smoothing spline.

e A cubic spline is a function g on an interval [a,b]| such that for some
knotst; witha =1y <t; <--- <ty 1=0>b

— on (t;_1,t;) the function g is a cubic polynomial

— at1y,...,t, the function values, first and second derivatives are con-
tinuous.

e A cubic spline is natural if the second and third derivatives are zero at a
and b.

e A natural cubic spline is linear on |a,#] and [t,, b].
e For a given A the smoothing spline is a linear estimator.
e The set of equations to be solved is large but banded.

e The fitted values m,(x;,A) can be viewed as
m(x,A) =A(A)y
where A(A) is the smoothing matrix or hat matrix for the linear fit.

e The function smooth. spline implements smoothing splines in R.

15
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Example: Old Faithful Eruptions

e A nonparametric fit of waiting time to previous duration may be useful
in predicting the time of the next eruption.

e The different smoothing methods considered produce the following:

with (geyser2, {
plot (pduration,waiting)
lines (lowess (pduration,waiting), col="red")
lines (supsmu (pduration,waiting), col="blue")
lines (ksmooth (pduration,waiting), col="green")
lines (smooth.spline (pduration,waiting), col="orange")

110
|

o
o O
o
8 00808 o O
o o
> o

waiting

pduration

e An animated version of the smoothing spline (available on line) shows
the effect of varying the smoothing parameter.

16
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Degrees of Freedom of a Linear Smoother

e For a linear regression fit with hat matrix
H=Xxx"x)"'xT
and full rank regressor matrix X

tr(H) = number of fitted parameters = degrees of freedom of fit

e By analogy define the degrees of freedom of a linear smoother as
dfﬁt = tr(A(l))

For the geyser data, the degrees of freedom of a smoothing spline fit with
the default bandwidth selection rule are

> sum(with (geyser2, smooth.spline (pduration,waiting)) S$lev)
[1] 4.169843

> with (geyser2, smooth.spline (pduration,waiting)) $df

[1] 4.169843

e For residual degrees of freedom the definition usually used is

dfres = n— 2tr(A(A)) +tr(A(L)A(A)T)

e Assuming constant error variance, a possible estimate is

52 _ L(i—fn(xi,4))* _ RSS(A)
€T dfes(A)  dfes(R)

e The simpler estimator

,  RSS(A)  RSS(A)
O T W —A))  n—dfy

1s also used.

e To reduce bias it may make sense to use a rougher smooth for variance
estimation than for mean function estimation.

17
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Choosing Smoothing Parameters for Linear Smoothers

e Many smoothing methods are linear for a given value of a smoothing
parameter A.

e Choice of the smoothing parameter A can be based on leave-one-out
cross-validation, i.e. minimizing the cross-validation score

CV(R) = - Y i (1, 2))?

e If the smoother satisfies (at least approximately)

_ LA )iy,
Y i4AR)i)

ms Y (i, 1)

and .
ZA(;L)U =1 foralli
j=1

then the cross-validation score can be computed as

vy (ALY

n

e The generalized cross-validation criterion, or GCV, uses average lever-
age values:

B 1 Yi — Mp(xi, A) ’
GCV(A) = ;Z (1 _n—ltrace(A(l))>

e The original motivation for GCV was computational; with better algo-
rithms this is no longer an issue.

18
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e An alternative motivation for GCV:

— For an orthogonal transformation Q one can consider fitting yp =

QY with Ag(A) = QA(A)QT.

— Coefficient estimates and SS;es are the same for all Q, but the CV
score is not.

— One can choose an orthogonal transformation such that the diagonal
elements of Ap(A) are constant.

— For any such Q we have Ap(1);; =n"'trace(Ap(1)) =n"ltrace(A(1))
e Despite the name, GCV does not generalize CV.

e Both CV and GCV have a tendency to undersmooth.

19
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e For the geyser data the code

with (geyser2, {
lambda <- seqg(0.5,2,1len=30)
f <- function(s, cv = FALSE)
smooth.spline (pduration,waiting, spar=s, cv=cv) $cv

gcv <— sapply(lambda, f)

cv <- sapply(lambda, £, TRUE)

plot (lambda, gcv, type="1")

lines (lambda, cv, col="blue")

})

extracts and plots GCV and CV values:

41 42

gev

40

0.5 1.0 15 20

lambda

e Both criteria select a value of A close to 1.

20
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e Other smoothing parameter selection criteria include

— Mallows C),
C, = RSS(1) +262df5 (1)

— Akaike’s information criterion (AIC)
AIC(A) =1og{RSS(A)} +2dfs(A)/n
— Corrected AIC of Hurvich, Simonoff, and Tsai (1998)

2(dfge(A) + 1)
n— dfﬁt(;L) -2

AICc(A) =1og{RSS(A)} +

21
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Spline Representations

e Splines can be written in terms of many different bases,

— B-splines
— truncated power basis

— radial or thin plate basis

Some are more useful numerically, others have interpretational advan-
tages.

e One useful basis for a cubic spline with knots {xi,...,kx} is the radial
basis or thin plate basis

1,X,|X—K1‘3,...,’X—KK‘3

e More generally, a basis for splines of order 2m — 1 is
~1 2m—1 2m—1
Lo, oo, X e—xg [P0 o — k[
form=1,2,3,....

— m = 2 produces cubic splines

— m = 1 produces linear splines

e In terms of this basis a spline is a function of the form
m—1 . K -
fx)=Y Bx/+ Y &lx— 1w~
Jj=0 k=1

e References:

— P.J. Green and B. W. Silverman (1994). Nonparametric Regression
and Generalied Linear Models

— D. Ruppert, M. P. Wand, and R. J. Carroll (2003). Semiparametric
Regression. SemiPar is an R package implementing the methods
of this book.

— G. Wahba (1990). Spline Models for Observational Data.

— S. Wood (2017).  Generalized Additive Models: An Introduction
with R, 2nd Ed.. This is related to the mgcv package.

22
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e A generic form for the fitted values is

y=XoB +Xi9.

® Regression splines refers to models with a small number of knots K fit
by ordinary least squares, i.e. by choosing 3,0 to minimize

ly —XoB — Xi 8|

e Penalized spline smoothing fits models with a larger number of knots
subject to a quadratic constraint

§'Ds<cC
for a positive definite D and some C.

e Equivalently, by a Lagrange multiplier argument, the solution minimizes
the penalized least squares criterion

ly —XoB —X,8|>+18TD$
for some A > 0.
e A common form of D is

D= [|i;— ;"]
1<i,j<K

e A variant uses
D= Ql/Z(Ql/Z)T

with
Q= [|K;— ;"""

1<i,j<K
where the principal square root M 1/2 of a matrix M with SVD
M = Udiag(d)V’

1s defined as
M'? = Udiag(Vd)VT

This form ensures that D is at least positive semi-definite.

23
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e Smoothing splines are penalized splines of degree 2m — 1 = 3 with knots
K; = x; and
D =[x — x[]
1<i,j<n

and the added natural boundary constraint

X[6=0
e For a natural cubic spline
/ g"(t)%dt = 8'D§

The quadratic form 87 D§ is strictly positive definite on the subspace
defined by X[ 6 = 0.

e Penalized splines can often approximate smoothing splines well using
far fewer knots.

e The detailed placement of knots and their number is usually not critical
as long as there are enough.

e Simple default rules that often work well (Ruppert, Wand, and Carroll
2003):

— knot locations:

Ky = k+1 th sample quantile of unique x;
= K12 ple qu unique Xx;

— number of knots:
K = min <% x number of unique x;, 35)
The SemiPar package actually seems to use the default
K = max (;1 X number of unique x;, 20)
e More sophisticated methods for choosing number and location of knots

are possible but not emphasized in the penalized spline literature at this
point.

24
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A Useful Computational Device

To minimize
1Y —XoB — X16|> + 167 D§

for a given A, suppose B satisties
AD=B"B

and
S

1Y* —X*B*||> = ||Y —XoB — X8| +A87DS

Then

So E and & can be computed by finding the OLS coefficients for the regression
of Y* on X*.

25
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Penalized Splines and Mixed Models

e For strictly positive definite D and a given A minimizing the objective
function

Iy —Xof — X1 8|>+A8"D&

is equivalent to maximizing the log likelihood for the mixed model
Y =XoB+X16+¢
with fixed effects parameters 8 and

€ ~N(0,021)
§ ~N(0,63D7")
A=o0;/0}
with A known.
e Some consequences:
— The penalized spline fit at x is the BLUP for the mixed model with

known mixed effects covariance structure.

— Linear mixed model software can be used to fit penalized spline
models (the R package SemiPar does this).

— The smoothing parameter A can be estimated using ML or REML
estimates of 62 and Gg from the linear mixed model.

— Interval estimation/testing formulations from mixed models can be
used.

e Additional consequences:

— The criterion has a Bayesian interpretation.

— Extension to models containing smoothing and mixed effects are
immediate.

— Extension to generalized linear models can use GLMM methodol-
ogy.

26
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Example: Old Faithful Eruptions

e Using the function spm from SemiPar a penalized spline model can be
fit with

> library (SemiPar)

> attach (geyser2) # needed because of flaws in spm implementation
> summary (spm(waiting =~ f (pduration)))

Summary for non-linear components:

df spar knots
f (pduration) 4.573 2.9 28

Note this includes 1 df for the intercept.

e The plot method for the spm result produces a plot with pointwise error
bars:

> plot (spm(waiting ~ f(pduration)), ylim = range(waiting))
> points (pduration, waiting)

70 80 90 100 110
| | | | |

60
|

| ' ¥ L LI HH} T

3 4 5

pduration
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A fit using mgcv:

> library (mgcv)
> gam.fit <- gam(waiting =~ s (pduration), data = geyser2)
> summary (gam.fit)

Family: gaussian
Link function: identity

Formula:
waiting 7 s (pduration)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 72.2886 0.3594 201.1 <2e-16 *x*

Signif. codes: 0 #*%xx 0.001 =% 0.01 = 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s (pduration) 3.149 3.987 299.8 <2e-16 xx*x

Signif. codes: 0 x%xx 0.001 % 0.01 = 0.05 . 0.1 1

R-sg. (adj) = 0.801 Deviance explained = 80.3%
GCV = 39.046 Scale est. = 38.503 n = 298

A plot of the smooth component with the mean-adjusted waiting times is pro-
duced by

> plot (gam.fit)
> with (geyser2, points(pduration, waiting - mean(waiting)))

28
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Smoothing with Multiple Predictors

Many methods have natural generalizations

All suffer from the curse of dimensionality.

Generalizations to two or three variables can work reasonably.

Local polynomial fits can be generalized to p predictors.

loess is designed to handle multiple predictors, in principle at least.
Spline methods can be generalized in two ways:

— tensor product splines use all possible products of single variable
spline bases.

— thin plate splines generalize the radial basis representation.

A thin plate spline of order m in d dimensions is of the form

M K
f(x) =Y Bigi(x)+ Y &r(x— 1K)
=1 k=1

with
() [ for d odd
r =
|u||?"~“1og||u|| for d even

and where the ¢; are a basis for the space of polynomials of total degree
< m— 1 in d variables. The dimension of this space is

d+m—1
M=
(i)
If d =2,m =2 then M = 3 and a basis is

¢1(x) = 1,02(x) = x1,93(x) = x2

29
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Penalized Thin Plate Splines

e Penalized thin plate splines usually use a penalty with
D— Ql/Z(Ql/Z)T
where

Q = [r(K; — K;)]
1<i,j<K

This corresponds at least approximately to using a squared derivative
penalty.

e Simple knot selection rules are harder for d > 1.
e Some approaches:

— space-filling designs (Nychka and Saltzman, 1998)

— clustering algorithms, such as clara

30
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Multivariate Smoothing Splines

e The bivariate smoothing spline objective of minimizing

Y (vi—g(xi)* +AJ(g)

with

d’g 2 0’%g 2 0’g 2
J(g)—//(a—x%> +2<ax18x2> +<a—x%> dxlde

1s minimized by a thin plate spline with knots at the x; and a constraint
on the § analogous to the natural spline constraint.

e Scaling of variables needs to be addressed
e Thin-plate spline smoothing is closely related to kriging.

e The general smoothing spline uses
D=X= [I”(K',' — K'l')]
with the constraint X[ & = 0.

e Challenge: the linear system to be solved for each A value to fit a smooth-
ing spline is large and not sparse.

31



Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Thin Plate Regression Splines
e Wood (2017) advocates an approach called thin plate regression splines
that is implemented in the mgcv package.

e The approach uses the spectral decomposition of X;
X, =UEU"

with E the diagonal matrix of eigen values, and the columns of U the
corresponding eigen vectors.

e The eigen values are ordered so that |E;;| > |E;;| fori < j.

e The approach replaces X; with a lower rank approximation
Xy = UEU!
using the k largest eigen values in magnitude.

e The implementation uses an iterative algorithm (Lanczos iteration) for
computing the largest k eigenvalues/singular values and vectors.

e The k leading eigenvectors form the basis for the fit.

e The matrix X; does not need to be formed explicitly; it is enough to be
able to compute Xjv for any v.

e k could be increased until the change in estimates is small or a specified
limit is reached.

e Aslong as k is large enough results are not very sensitive to the particular
value of k.

e mgcv by default uses k = 10 x 3¢~! for a d-dimensional smooth.
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e This approach seems to be very effective in practice and avoids the need
to specify a set of knots.

e The main drawback is that the choice of k and its impact on the basis
used are less interpretable.

e With this approach the computational cost is reduced from O(n?) to
O(n%k).

e For large n Wood (2017) recommends using a random sample of n, rows
to reduce the computation cost to O(n?k). (From the help files the ap-
proach in mgcv looks more like O(n X n, X k) to me).
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Example: Scallop Catches

e Data records location and size of scallop catches off Long Island.
e A bivariate penalized spline fit is computed by

data(scallop)

attach (scallop)

log.catch <- log(tot.catch + 1)

fit <- spm(log.catch ~ f(longitude, latitude))
summary (fit)

vV V. V V V

Summary for non-linear components:

df spar knots
f(longitude, latitude) 25.12 0.2904 37

e Default knot locations are determined using clara

e Knot locations and fit:
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A fit using mgcv would use

> scallop.gam <- gam(log.catch = s(longitude, latitude), data = scallop)
> summary (scallop.gam)

Family: gaussian
Link function: identity

Formula:
log.catch 7 s(longitude, latitude)

Parametric coefficients:
Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 3.4826 0.1096 31.77 <2e-16 *x*

Signif. codes: 0 *%xx 0.001 % 0.01 = 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s (longitude, latitude) 26.23 28.53 8.823 <2e-16 *x*x*

Signif. codes: 0 x%xx 0.001 % 0.01 = 0.05 . 0.1 1
R-sqg. (adj) = 0.623 Deviance explained = 69%

GCV = 2.1793 Scale est. = 1.7784 n = 148
> plot (scallop.gam)
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Computational Issues
e Algorithms that select the smoothing parameter typically need to com-
pute smooths for many parameter values.
e Smoothing splines require solving an n X n system.

— For a single variable the fitting system can be made tri-diagonal.

— For thin plate splines of two or more variables the equations are not
sparse.

e Penalized splines reduce the computational burden by choosing fewer
knots, but then need to select knot locations.

e Thin plate regression splines (implemented in the mgcv package) use a
rank k approximation for a user-specified k.

e As long as the number of knots or the number of terms & is large enough
results are not very sensitive to the particular value of k.

e Examples are available in

http://www.stat.uiowa.edu/~luke/classes/
STAT7400/examples/smoothex.Rmd

36


http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd

	Density Estimation
	Kernel Density Estimation
	Mean Square Error for Kernel Density Estimators
	Choosing a Bandwidth
	Example: Durations of Eruptions of Old Faithful
	Issues and Notes
	Density Estimation in Higher Dimensions
	Example: Eruptions of Old Faithful
	Visualizing Density Estimates
	Kernel Smoothing and Local Regression
	Spline Smoothing
	Example: Old Faithful Eruptions
	Degrees of Freedom of a Linear Smoother
	Choosing Smoothing Parameters for Linear Smoothers
	Spline Representations
	A Useful Computational Device
	Penalized Splines and Mixed Models
	Example: Old Faithful Eruptions
	Smoothing with Multiple Predictors
	Penalized Thin Plate Splines
	Multivariate Smoothing Splines
	Thin Plate Regression Splines
	Example: Scallop Catches
	Computational Issues

