Basic Computer Architecture

Typical Machine Layout

Processor Network
Monitor
Cache
Bus
Memory Keyboard Mouse Disk

Figure based on M. L. Scott, Programming Language Pragmatics, Figure 5.1,
p.- 205

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney
Structure of Lab Workstations

Processor and Cache

luke@l-1nx200 % lscpu

Architecture: x86_64

CPU op-mode (s) : 32-bit, 64-bit
Byte Order: Little Endian
CPU (s) : 8

On—-line CPU(s) list: 0-7

Thread(s) per core: 2

Core (s) per socket: 4

Socket (s) : 1

NUMA node(s) : 1

Vendor ID: GenuinelIntel
CPU family: 6

Model: 94

Model name: Intel (R) Core(TM) 17-6700 CPU @ 3.40GHz
Stepping: 3

CPU MHz: 3895.093

CPU max MHz: 4000.0000

CPU min MHz: 800.0000
BogoMIPS: 6816.00
Virtualization: VT—-x

L1ld cache: 32K

L1li cache: 32K

L2 cache: 256K

L3 cache: 8192K

NUMA nodeO CPU(s) : 0-7

Flags:

e There is a single quad-core processor with hyperthreading that acts like
eight separate processors

e Each has 8Mb of L3 cache

Computer Intensive Statistics STAT:7400, Spring 2019

Memory and Swap Space
luke@l-1nx200 "% free

total used free
Mem: 32866464 396876 27076056
Swap: 16449532 0 16449532

Tierney
shared buff/cache available
33620 5393532 31905476

e The workstations have about 32G of memory.

e The swap space is about 16G.

Disk Space

Using the df command produces:

luke@l-1nx200 "% df
luke@l-1nx200 "% df

Filesystem 1K-blocks Used Available
/dev/mapper/vg00-root 65924860 48668880 13884156
/dev/mapper/vg00—tmp 8125880 28976 7661092
/dev/mapper/vg00-var 75439224 13591304 57992768
/dev/mapper/vg00-scratch 622877536 33068 622844468
netapp2:/vol/grad 553648128 319715584 233932544
netapp2:/vol/students 235929600 72504448 163425152
e Local disks are large but mostly unused

User space is on network disks.

Network speed can be a bottle neck.

Use%
78%
1%
19%
1%
58%

31%

Mounted on

/

/tmp

/var
/var/scratch

/mnt /nfs/netapp2/grad

/mnt/nfs/netapp2/students

Space in /var/scratch can be used for temporary storage.

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Performance Monitoring

e Using the t op command produces:

top - 11:06:34 up 4:06, 1 user, load average: 0.00, 0.01, 0.05
Tasks: 127 total, 1 running, 126 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.8%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 16393524k total, 898048k used, 15495476k free, 268200k buffers
Swap: 18481148k total, Ok used, 18481148k free, 217412k cached
PID USER PR NI VIRT RES ©SHR S %CPU $SMEM TIME+ COMMAND
1445 root 20 0 445m 59m 23m S 2.0 0.4 0:11.48 kdm_greet
1 root 20 0 39544 4680 2036 S 0.0 0.0 0:01.01 systemd
2 root 20 0 0 0 0s 0.0 0.0 0:00.00 kthreadd
3 root 20 0 0 0 0SS 0.0 0.0 0:00.00 ksoftirgd/0
5 root 0 -20 0 0 0s 0.0 0.0 0:00.00 kworker/0:0H
6 root 20 0 0 0 0SS 0.0 0.0 0:00.00 kworker/u:0
7 root 0 -20 0 0 0s 0.0 0.0 0:00.00 kworker/u:0H
8 root RT 0 0 0 0s 0.0 0.0 0:00.00 migration/O0
9 root RT 0 0 0 0sS 0.0 0.0 0:00.07 watchdog/0
10 root RT 0 0 0 0s 0.0 0.0 0:00.00 migration/1
12 root 0 -20 0 0 0s 0.0 0.0 0:00.00 kworker/1:0H
13 root 20 0 0 0 0SS 0.0 0.0 0:00.00 ksoftirgd/1
14 root RT 0 0 0 0s 0.0 0.0 0:00.10 watchdog/1
15 root RT 0 0 0 0s 0.0 0.0 0:00.00 migration/2
17 root 0 -20 0 0 0s 0.0 0.0 0:00.00 kworker/2:0H
18 root 20 0 0 0 0SS 0.0 0.0 0:00.00 ksoftirqgd/2

e Interactive options allow you to kill or renice (change the priority of)
processes you own.

e The command ht op may be a little nicer to work with.

e A GUI tool, System Monitor, is available from one of the menus. From
the command line this can be run as gnome—-system-monitor.

e Another useful command is ps (process status)

luke@l-1nx200 "% ps -u luke

PID TTY TIME CMD
4618 2 00:00:00 sshd
4620 pts/0 00:00:00 tcsh
4651 pts/0 00:00:00 ps

There are many options; see man ps for details.

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney
Processors

Basics

e Processors execute a sequence of instructions
e Each instruction requires some of

— decoding instruction

— fetching operands from memory

— performing an operation (add, multiply, ...)
— etc.

e Older processors would carry out one of these steps per clock cycle and
then move to the next.

e most modern processors use pipelining to carry out some operations in
parallel.

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney
Pipelining
A simple example:

s<+0
fori=1tondo

S < S+ Xy
end

Simplified view: Each step has two parts,

e Fetch x; and y; from memory

e Compute s = s+ x;y;
Suppose the computer has two functional units that can operate in parallel,

e An Integer unit that can fetch from memory

e A Floating Point unit that can add and multiply

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

If each step takes roughly the same amount of time, a pipeline can speed the
computation by a factor of two:

Cycle 1 . Cycle 2 . Cycle 3 ‘ Cycle 4 . Cycle 5

Int: ‘ Fetchx,y, , Fetchx,y, , Fetchx, y, ‘ Fetchx,y,

|s=s+%x

FP:} : S=sS+Xx.y, : S=s+X,Y, : S=S+X,Y, |

4¥a

Floating point operations are much slower than this.

Modern chips contain many more separate functional units.

Pipelines can have 10 or more stages.

Some operations take more than one clock cycle.

The compiler or the processor orders operations to keep the pipeline
busy.

e If this fails, then the pipeline stalls.

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Superscalar Processors, Hyper-Threading, and Multiple Cores

e Some processors have enough functional units to have more than one
pipeline running in parallel.

e Such processors are called superscalar

e In some cases there are enough functional units per processor to allow
one physical processor to pretend like it is two (somewhat simpler) logi-
cal processors. This approach is called hyper-threading.

— Hyper-threaded processors on a single physical chip share some re-
sources, in particular cache.

— Benchmarks suggest that hyper-threading produces about a 20%
speed-up in cases where dual physical processors would produce
a factor of 2 speed-up

e Recent advances allow full replication of processors within one chip;
these are multi core processors.

— Multi-core machines are effectively full multi-processor machines
(at least for most purposes).
— Dual core processors are now ubiquitous.

— The machines in the department research cluster have two dual core
processors, or four effective processors.

— Our lab machines have a single quad core processor.
— Processors with 6 or 8 or even more cores are available.
e Many processors support some form of vectorized operations, e.g. SSE2

(Single Instruction, Multiple Data, Extensions 2) on Intel and AMD pro-
CESSOrS.

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Implications

e Modern processors achieve high speed though a collection of clever tricks.
e Most of the time these tricks work extremely well.

e Every so often a small change in code may cause pipelining heuristics to
fail, resulting in a pipeline stall.

e These small changes can then cause large differences in performance.

e The chances are that a “small change” in code that causes a large change
in performance was not in fact such a small change after all.

e Processor speeds have not been increasing very much recently.

e Many believe that speed improvements will need to come from increased
use of explicit parallel programming.

e More details are available in a talk at

http://www.1nfog.com/presentations/
click—crash-course—-modern—hardware

http://www.infoq.com/presentations/click-crash-course-modern-hardware
http://www.infoq.com/presentations/click-crash-course-modern-hardware

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney
Memory

Basics

e Data and program code are stored in memory.
e Memory consists of bits (binary integers)
e On most computers

— bits are collected into groups of eight, called bytes
— there is a natural word size of W bits

— the most common value of W is still 32; 64 is becoming more com-
mon; 16 also occurs

— bytes are numbered consecutively, 0,1,2,...,N =2W¥

— an address for code or data is a number between 0 and N represent-
ing a location in memory, usually in bytes.

— 232 =4,294,967,296 = 4GB

— The maximum amount of memory a 32-bit process can address is 4
Gigabytes.

— Some 32-bit machines can use more than 4G of memory, but each
process gets at most 4G.

— Most hard disks are much larger than 4G.

10

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Memory Layout

e A process can conceptually access up to 2V bytes of address space.

e The operating system usually reserves some of the address space for
things it does on behalf of the process.

e On 32-bit Linux the upper 1GB is reserved for the operating system ker-
nel.

e Only a portion of the usable address space has memory allocated to it.

e Standard 32-bit Linux memory layout:

Code &

Data Heap % Shared Memory <— stack Kernesl

Libraries Mapped

1¢G Kle

e Standard heap can only grow to 1G.

e malloc implementations can allocate more using memory mapping.
e Obtaining large amounts of contiguous address space can be hard.

e Memory allocation can slow down when memory mapping is needed.
e Other operating systems differ in detail only.

e 64-bit machines are much less limited.

e The design matrix for n cases and p variables stored in double precision
needs 8np bytes of memory.

p=10 p=100 p=1000
n =100 8,000 80,000 800,000
n = 1,000 80,000 800,000 8,000,000
n=10,000 800,000 8,000,000 80,000,000
n = 100,000 8,000,000 80,000,000 800,000,000

11

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Virtual and Physical Memory

e To use address space, a process must ask the kernel to map physical space
to the address space.

e There is a hierarchy of physical memory:

A L1 Cache
L2 Cache
B
o %
57} & RAM
v Swap

e Hardware/OS hides the distinction.
e Caches are usually on or very near the processor chip and very fast.
e RAM usually needs to be accessed via the bus

e The hardware/OS try to keep recently accessed memory and locations
nearby in cache.

12

Computer Intensive Statistics STAT:7400, Spring 2019

e A simple example:

msum <- function (x) {
nr <- nrow(x)
nc <— ncol (x)

s <= 0
for (1 in 1 : nr)
for (3 in 1 : nc)

s <— s + x[1, 7]

}
m <- matrix (0, nrow = 5000000, 2)

system.time (msum (m))
#4# user system elapsed
1.712 0.000 1.712

fix (msum) ## reverse the order of the sums

system.time (msum(m))
user system elapsed
0.836 0.000 0.835
e Matrices are stored in column major order.

e This effect is more pronounced in low level code.

e Careful code tries to preserve locality of reference.

13

Tierney

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Registers

Registers are storage locations on the processor that can be accessed very
fast.

Most basic processor operations operate on registers.

Most processors have separate sets of registers for integer and floating
point data.

On some processors, including 1386, the floating point registers have ex-
tended precision.

The 1386 architecture has few registers, 8 floating point, 8 integer data, 8
address; some of these have dedicated purposes. Not sure about x86_64
(our lab computers).

RISC processors usually have 32 or more of each kind.
Optimizing compilers work hard to keep data in registers.

Small code changes can cause dramatic speed changes in optimized code
because they make it easier or harder for the compiler to keep data in
registers.

If enough registers are available, then some function arguments can be
passed in registers.

Vector support facilities, like SSE2, provide additional registers that com-
pilers may use to improve performance.

14

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Processes and Shells

e A shell is a command line interface to the computer’s operating system.

e Common shells on Linux and MacOS are bash and tcsh.

You can now set your default Linix shellathttps://hawkid.uiowa.
edu/

Shells are used to interact with the file system and to start processes that
run programs.

You can set process limits and environment variables the shell.

Programs run from shells take command line arguments.

Some Basic bash/tcsh Commands

hostname prints the name of the computer the shell is running on.

pwd prints the current working directory.

1s lists files a directory

— 1s lists files in the current directory.

— 1s foo lists files in a sub-directory foo.

cd changes the working directory:

— cdorcd moves to your home directory;
— cd foo moves to the sub-directory foo;

— cd .. moves up to the parent directory;

e mkdir foo creates a new sub-directory foo in your current working
directory;

e rm, rmdir can be used to remove files and directories; BE VERY
CAREFUL WITH THESE!!!

15

https://hawkid.uiowa.edu/
https://hawkid.uiowa.edu/

Computer Intensive Statistics STAT: 7400, Spring 2019 Tierney

Standard Input, Standard Output, and Pipes

e Programs can also be designed to read from standard input and write to
standard output.

e Shells can redirect standard input and standard output.
e Shells can also connect processes into pipelines.
e On multi-core systems pipelines can run in parallel.

e A simple example using the bash shell script P1. sh
#!/bin/bash
while true; do echo $1; done
and the rev program can be run as

bash Pl.sh fox

bash Pl.sh fox > /dev/null

bash Pl.sh fox | rev

bash Pl.sh fox | rev > /dev/null

bash Pl.sh fox | rev | rev > /dev/null

The proc File System

e The proc file system allows you to view many aspects of a process.

16

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/pipes

	Typical Machine Layout
	Structure of Lab Workstations
	Processor and Cache
	Memory and Swap Space
	Disk Space
	Performance Monitoring

	Processors
	Basics
	Pipelining
	Superscalar Processors, Hyper-Threading, and Multiple Cores
	Implications

	Memory
	Basics
	Memory Layout
	Virtual and Physical Memory
	Registers

	Processes and Shells
	Some Basic bash/tcsh Commands
	Standard Input, Standard Output, and Pipes
	The proc File System

