
Basic Computer Architecture

Typical Machine Layout

Figure based on M. L. Scott, Programming Language Pragmatics, Figure 5.1,
p. 205

1

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Structure of Lab Workstations

Processor and Cache

luke@l-lnx200 ˜% lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 94
Model name: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
Stepping: 3
CPU MHz: 3895.093
CPU max MHz: 4000.0000
CPU min MHz: 800.0000
BogoMIPS: 6816.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7
Flags: ...

• There is a single quad-core processor with hyperthreading that acts like
eight separate processors

• Each has 8Mb of L3 cache

2

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Memory and Swap Space

luke@l-lnx200 ˜% free
total used free shared buff/cache available

Mem: 32866464 396876 27076056 33620 5393532 31905476
Swap: 16449532 0 16449532

• The workstations have about 32G of memory.

• The swap space is about 16G.

Disk Space

Using the df command produces:

luke@l-lnx200 ˜% df
luke@l-lnx200 ˜% df
Filesystem 1K-blocks Used Available Use% Mounted on
...
/dev/mapper/vg00-root 65924860 48668880 13884156 78% /
/dev/mapper/vg00-tmp 8125880 28976 7661092 1% /tmp
/dev/mapper/vg00-var 75439224 13591304 57992768 19% /var
/dev/mapper/vg00-scratch 622877536 33068 622844468 1% /var/scratch
...
netapp2:/vol/grad 553648128 319715584 233932544 58% /mnt/nfs/netapp2/grad
...
netapp2:/vol/students 235929600 72504448 163425152 31% /mnt/nfs/netapp2/students
...

• Local disks are large but mostly unused

• Space in /var/scratch can be used for temporary storage.

• User space is on network disks.

• Network speed can be a bottle neck.

3

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Performance Monitoring

• Using the top command produces:

top - 11:06:34 up 4:06, 1 user, load average: 0.00, 0.01, 0.05
Tasks: 127 total, 1 running, 126 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.8%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 16393524k total, 898048k used, 15495476k free, 268200k buffers
Swap: 18481148k total, 0k used, 18481148k free, 217412k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1445 root 20 0 445m 59m 23m S 2.0 0.4 0:11.48 kdm_greet

1 root 20 0 39544 4680 2036 S 0.0 0.0 0:01.01 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
3 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H
6 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/u:0
7 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/u:0H
8 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
9 root RT 0 0 0 0 S 0.0 0.0 0:00.07 watchdog/0
10 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/1
12 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/1:0H
13 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/1
14 root RT 0 0 0 0 S 0.0 0.0 0:00.10 watchdog/1
15 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/2
17 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/2:0H
18 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/2

...

• Interactive options allow you to kill or renice (change the priority of)
processes you own.

• The command htop may be a little nicer to work with.

• A GUI tool, System Monitor, is available from one of the menus. From
the command line this can be run as gnome-system-monitor.

• Another useful command is ps (process status)

luke@l-lnx200 ˜% ps -u luke
PID TTY TIME CMD

4618 ? 00:00:00 sshd
4620 pts/0 00:00:00 tcsh
4651 pts/0 00:00:00 ps

There are many options; see man ps for details.

4

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Processors

Basics

• Processors execute a sequence of instructions

• Each instruction requires some of

– decoding instruction

– fetching operands from memory

– performing an operation (add, multiply, . . .)

– etc.

• Older processors would carry out one of these steps per clock cycle and
then move to the next.

• most modern processors use pipelining to carry out some operations in
parallel.

5

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Pipelining

A simple example:

s← 0
for i = 1 to n do

s← s+ xiyi
end

Simplified view: Each step has two parts,

• Fetch xi and yi from memory

• Compute s = s+ xiyi

Suppose the computer has two functional units that can operate in parallel,

• An Integer unit that can fetch from memory

• A Floating Point unit that can add and multiply

6

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

If each step takes roughly the same amount of time, a pipeline can speed the
computation by a factor of two:

• Floating point operations are much slower than this.

• Modern chips contain many more separate functional units.

• Pipelines can have 10 or more stages.

• Some operations take more than one clock cycle.

• The compiler or the processor orders operations to keep the pipeline
busy.

• If this fails, then the pipeline stalls.

7

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Superscalar Processors, Hyper-Threading, and Multiple Cores

• Some processors have enough functional units to have more than one
pipeline running in parallel.

• Such processors are called superscalar

• In some cases there are enough functional units per processor to allow
one physical processor to pretend like it is two (somewhat simpler) logi-
cal processors. This approach is called hyper-threading.

– Hyper-threaded processors on a single physical chip share some re-
sources, in particular cache.

– Benchmarks suggest that hyper-threading produces about a 20%
speed-up in cases where dual physical processors would produce
a factor of 2 speed-up

• Recent advances allow full replication of processors within one chip;
these are multi core processors.

– Multi-core machines are effectively full multi-processor machines
(at least for most purposes).

– Dual core processors are now ubiquitous.

– The machines in the department research cluster have two dual core
processors, or four effective processors.

– Our lab machines have a single quad core processor.

– Processors with 6 or 8 or even more cores are available.

• Many processors support some form of vectorized operations, e.g. SSE2
(Single Instruction, Multiple Data, Extensions 2) on Intel and AMD pro-
cessors.

8

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Implications

• Modern processors achieve high speed though a collection of clever tricks.

• Most of the time these tricks work extremely well.

• Every so often a small change in code may cause pipelining heuristics to
fail, resulting in a pipeline stall.

• These small changes can then cause large differences in performance.

• The chances are that a “small change” in code that causes a large change
in performance was not in fact such a small change after all.

• Processor speeds have not been increasing very much recently.

• Many believe that speed improvements will need to come from increased
use of explicit parallel programming.

• More details are available in a talk at

http://www.infoq.com/presentations/
click-crash-course-modern-hardware

9

http://www.infoq.com/presentations/click-crash-course-modern-hardware
http://www.infoq.com/presentations/click-crash-course-modern-hardware

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Memory

Basics

• Data and program code are stored in memory.

• Memory consists of bits (binary integers)

• On most computers

– bits are collected into groups of eight, called bytes

– there is a natural word size of W bits

– the most common value of W is still 32; 64 is becoming more com-
mon; 16 also occurs

– bytes are numbered consecutively, 0,1,2, . . . ,N = 2W

– an address for code or data is a number between 0 and N represent-
ing a location in memory, usually in bytes.

– 232 = 4,294,967,296 = 4GB

– The maximum amount of memory a 32-bit process can address is 4
Gigabytes.

– Some 32-bit machines can use more than 4G of memory, but each
process gets at most 4G.

– Most hard disks are much larger than 4G.

10

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Memory Layout

• A process can conceptually access up to 2W bytes of address space.

• The operating system usually reserves some of the address space for
things it does on behalf of the process.

• On 32-bit Linux the upper 1GB is reserved for the operating system ker-
nel.

• Only a portion of the usable address space has memory allocated to it.

• Standard 32-bit Linux memory layout:

• Standard heap can only grow to 1G.

• malloc implementations can allocate more using memory mapping.

• Obtaining large amounts of contiguous address space can be hard.

• Memory allocation can slow down when memory mapping is needed.

• Other operating systems differ in detail only.

• 64-bit machines are much less limited.

• The design matrix for n cases and p variables stored in double precision
needs 8np bytes of memory.

p = 10 p = 100 p = 1000
n = 100 8,000 80,000 800,000
n = 1,000 80,000 800,000 8,000,000
n = 10,000 800,000 8,000,000 80,000,000
n = 100,000 8,000,000 80,000,000 800,000,000

11

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Virtual and Physical Memory

• To use address space, a process must ask the kernel to map physical space
to the address space.

• There is a hierarchy of physical memory:

• Hardware/OS hides the distinction.

• Caches are usually on or very near the processor chip and very fast.

• RAM usually needs to be accessed via the bus

• The hardware/OS try to keep recently accessed memory and locations
nearby in cache.

12

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A simple example:

msum <- function(x) {
nr <- nrow(x)
nc <- ncol(x)
s <- 0
for (i in 1 : nr)

for (j in 1 : nc)
s <- s + x[i, j]

s
}
m <- matrix(0, nrow = 5000000, 2)
system.time(msum(m))
user system elapsed
1.712 0.000 1.712
fix(msum) ## reverse the order of the sums
system.time(msum(m))
user system elapsed
0.836 0.000 0.835

• Matrices are stored in column major order.

• This effect is more pronounced in low level code.

• Careful code tries to preserve locality of reference.

13

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Registers

• Registers are storage locations on the processor that can be accessed very
fast.

• Most basic processor operations operate on registers.

• Most processors have separate sets of registers for integer and floating
point data.

• On some processors, including i386, the floating point registers have ex-
tended precision.

• The i386 architecture has few registers, 8 floating point, 8 integer data, 8
address; some of these have dedicated purposes. Not sure about x86 64
(our lab computers).

• RISC processors usually have 32 or more of each kind.

• Optimizing compilers work hard to keep data in registers.

• Small code changes can cause dramatic speed changes in optimized code
because they make it easier or harder for the compiler to keep data in
registers.

• If enough registers are available, then some function arguments can be
passed in registers.

• Vector support facilities, like SSE2, provide additional registers that com-
pilers may use to improve performance.

14

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Processes and Shells

• A shell is a command line interface to the computer’s operating system.

• Common shells on Linux and MacOS are bash and tcsh.

• You can now set your default Linix shell at https://hawkid.uiowa.
edu/

• Shells are used to interact with the file system and to start processes that
run programs.

• You can set process limits and environment variables the shell.

• Programs run from shells take command line arguments.

Some Basic bash/tcsh Commands

• hostname prints the name of the computer the shell is running on.

• pwd prints the current working directory.

• ls lists files a directory

– ls lists files in the current directory.

– ls foo lists files in a sub-directory foo.

• cd changes the working directory:

– cd or cd moves to your home directory;

– cd foo moves to the sub-directory foo;

– cd .. moves up to the parent directory;

• mkdir foo creates a new sub-directory foo in your current working
directory;

• rm, rmdir can be used to remove files and directories; BE VERY
CAREFUL WITH THESE!!!

15

https://hawkid.uiowa.edu/
https://hawkid.uiowa.edu/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Standard Input, Standard Output, and Pipes

• Programs can also be designed to read from standard input and write to
standard output.

• Shells can redirect standard input and standard output.

• Shells can also connect processes into pipelines.

• On multi-core systems pipelines can run in parallel.

• A simple example using the bash shell script P1.sh

#!/bin/bash

while true; do echo $1; done

and the rev program can be run as

bash P1.sh fox
bash P1.sh fox > /dev/null
bash P1.sh fox | rev
bash P1.sh fox | rev > /dev/null
bash P1.sh fox | rev | rev > /dev/null

The proc File System

• The proc file system allows you to view many aspects of a process.

16

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/pipes

	Typical Machine Layout
	Structure of Lab Workstations
	Processor and Cache
	Memory and Swap Space
	Disk Space
	Performance Monitoring

	Processors
	Basics
	Pipelining
	Superscalar Processors, Hyper-Threading, and Multiple Cores
	Implications

	Memory
	Basics
	Memory Layout
	Virtual and Physical Memory
	Registers

	Processes and Shells
	Some Basic bash/tcsh Commands
	Standard Input, Standard Output, and Pipes
	The proc File System

