
Statistical Learning

Some Machine Learning Terminology

• Two forms of learning:

– supervised learning: features and responses are available for a train-
ing set, and a way of predicting response from features of new data
is to be learned.

– unsupervised learning: no distinguished responses are available; the
goal is to discover patterns and associations among features.

• Classification and regression are supervised learning methods.

• Clustering, multi-dimensional scaling, and principal curves are unsuper-
vised learning methods.

• Data mining involves extracting information from large (many cases
and/or many variables), messy (many missing values, many different
kinds of variables and measurement scales) data bases.

• Machine learning often emphasizes methods that are sufficiently fast and
automated for use in data mining.

• Machine learning is now often considered a branch of Artificial Intelli-
gence (AI).

1

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Tree models are popular in machine learning

– supervised: as predictors in classification and regression settings

– unsupervised: for describing clustering results.

• Some other methods often associated with machine learning:

– Bagging

– Boosting

– Random Forests

– Support Vector Machines

– Neural Networks

• References:

– T. Hastie, R. Tibshirani, and J. Friedman (2009). The Elements of
Statistical Learning, 2nd Ed..

– G. James, D. Witten, T. Hastie, and R. Tibshirani (2013). An Intro-
duction to Statistical Learning, with Applications in R.

– D. Hand, H, Mannila, and P. Smyth (2001). Principles of Data Min-
ing.

– C. M. Bishop (2006). Pattern Recognition and Machine Learning.

– M. Shu (2008). Kernels and ensembles: perspectives on statistical
learning, The American Statistician 62(2), 97–109.

Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/learning.Rmd

2

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/learning.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/learning.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Tree Models

• Tree models were popularized by a book and software named CART, for
Classification and Regression Trees.

• The name CART was trademarked and could not be used by other im-
plementations.

• Tree models partition the predictor space based on a series of binary
splits.

• Leaf nodes predict a response

– a category for classification trees

– a numerical value for regression trees

• Regression trees may also use a simple linear model within leaf nodes of
the partition.

• Using rpart a tree model for predicting union membership can be con-
structed by

library(SemiPar) # for trade union data
library(rpart)
trade.union$member.fac <-

as.factor(ifelse(trade.union$union.member, "yes", "no"))
fit <- rpart(member.fac ˜ wage + age + years.educ,

data = trade.union)
plot(fit)
text(fit, use.n = TRUE)

3

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

|
wage< 8.825

years.educ>=13.5
wage< 12.54

years.educ>=11.5

age>=42.5
age< 36.5

age>=39

no
276/29 no

99/25

no
18/3

no
21/8

yes
4/6

yes
6/8

no
11/7

yes
3/10

Left branch is TRUE, right branch is FALSE.

4

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Regression trees use a constant fit by default.

• A regression tree for the California air pollution data:

library(SemiPar) # for air pollution data
library(rpart)
fit2 <- rpart(ozone.level ˜ daggett.pressure.gradient +

inversion.base.height +
inversion.base.temp,

data = calif.air.poll)
plot(fit2)
text(fit2)

|
inversion.base.temp< 63.59

inversion.base.height>=3574

daggett.pressure.gradient< −7.5

inversion.base.temp< 58.55

daggett.pressure.gradient< −10.5

inversion.base.temp< 75.83inversion.base.temp< 72.77

inversion.base.temp< 84.92

inversion.base.height< 865.5

5.104

4.727 8.419 12.45

7.517 14.29

16.55

19.83 24.78 28.64

5

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Tree models are flexible but simple

– results are easy to explain to non-specialists

• Small changes in data

– can change tree structure substantially
– usually do not change predictive performance much

• Fitting procedures usually consist of two phases:

– growing a large tree
– pruning back the tree to reduce over-fitting

• Tree growing usually uses a greedy approach.

• Pruning usually minimizes a penalized goodness of fit measure

R(T)+λ size(T)

with R a raw measure of goodness of fit.

• The parameter λ can be chosen by some form of cross-validation.

• For regression trees, mean square prediction error is usually used for both
growing and pruning.

• For classification trees

– growing usually uses a loss function that rewards class purity, e.g. a
Gini index

Gm =
K

∑
k=1

p̂mk(1− p̂mk)

or a cross-entropy

Dm =−
K

∑
k=1

p̂mk log p̂mk

with p̂mk the proportion of training observations in region m that are
in class k.

– Pruning usually focuses on minimizing classification error rates.

• The rpart package provides one implementation; the tree and party
packages are also available, among others.

6

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bagging, Boosting, and Random Forests

• All three are ensemble methods: They combine weaker predictors, or
learners, to form a stronger one.

• A related idea is Bayesian Model Averaging (BMA)

Bagging: Bootstrap AGGregation

• Bootstrapping in prediction models produces a sample of predictors

T ∗1 (x), . . . ,T
∗

R (x).

• Usually bootstrapping is viewed as a way of assessing the variability of
the predictor T (x) based on the original sample.

• For predictors that are not linear in the data an aggregated estimator such
as

TBAG(x) =
1
R

R

∑
i=1

T ∗i (x)

may be an improvement.

• Other aggregations are possible; for classification trees two options are

– averaging probabilities

– majority vote

• Bagging can be particularly effective for tree models.

– Less pruning, or even no pruning, is needed since variance is re-
duced by averaging.

• Each bootstrap sample will use about 2/3 of the observations; about 1/3
will be out of bag, or OOB. The OOB observations can be used to con-
struct an error estimate.

• For tree methods:

7

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– The resulting predictors are more accurate than simple trees, but lose
the simple interpretability.

– The total reduction in RSS or the Gini index due to splits on a par-
ticular variable can be used as a measure of variable importance.

• Bumping (Bootstrap umbrella of model parameters) is another approach:

– Given a bootstrap sample of predictors T ∗1 (x), . . . ,T
∗

R (x) choose the
one that best fits the original data.

– The original sample is included in the bootstrap sample so the orig-
inal predictor can be chosen if it is best.

8

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Random Forests

• Introduced by Breiman (2001).

• Also covered by a trademark.

• Similar to bagging for regression or classification trees.

• Draws ntree bootstrap samples.

• For each sample a tree is grown without pruning.

– At each node mtry out of p available predictors are sampled at ran-
dom.

– A common choice is mtry ≈
√

p.

– The best split among the sampled predictors is used.

• Form an ensemble predictor by aggregating the trees.

• Error rates are measured by

– at each bootstrap iteration predicting data not in the sample (out-of-
bag, OOB, data).

– Combine the OOB error measures across samples.

• Bagging without pruning for tree models is equivalent to a random forest
with mtry = p.

• A motivation is to reduce correlation among the bootstrap trees and so
increase the benefit of averaging.

• The R package randomForest provides an interface to FORTRAN
code of Breiman and Cutler.

• The software provides measures of

– “importance” of each predictor variable

– similarity of observations

• Some details are available in A. Liaw and M. Wiener (2002). “Classifi-
cation and Regression by randomForest,” R News.

9

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Other packages implementing random forests are a available as well.

• A recent addition is the ranger package.

10

http://philipppro.github.io/More_complete_list/
https://www.jstatsoft.org/article/view/v077i01

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Boosting

• Boosting is a way of improving on a weak supervised learner.

• The basic learner needs to be able to work with weighted data

• The simplest version applies to binary classification with responses yi =
±1.

• A binary classifier produced from a set of weighted training data is a
function

G(x) : X →{−1,+1}

• The AdaBoost.M1 (adaptive boosting) algorithm:

1. Initialize observation weights wi = 1/n, i = 1, . . . ,n.

2. For m = 1, . . . ,M do

(a) Fit a classifier Gm(x) to the training data with weights wi.
(b) Compute the weighted error rate

errm =
∑

n
i=1 wi1{yi 6=Gm(xi)}

∑
n
i=1 wi

(c) Compute αm = log((1− errm)/errm)

(d) Set wi← wi exp(αm1{yi 6=Gm(xi)})

3. Output G(x) = sign
(
∑

M
i=1 αmGm(x)

)
• The weights are adjusted to put more weight on points that were classi-

fied incorrectly.

• These ideas extend to multiple categories and to continuous responses.

• Empirical evidence suggests boosting is successful in a range of prob-
lems.

• Theoretical investigations support this.

• The resulting classifiers are closely related to additive models constructed
from a set of elementary basis functions.

11

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The number of steps M plays the role of a model selection parameter

– too small a value produces a poor fit

– too large a value fits the training data too well

Some form of regularization, e.g. based on a validation sample, is needed.

• Other forms of regularization, e.g. variants of shrinkage, are possible as
well.

12

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A variant for boosting regression trees:

1. Set f̂ (x) = 0 and ri = yi for all i in the training set.

2. For m = 1, . . . ,M:

(a) Fit a tree f̂ m(x) with d splits to the training data X ,r.
(b) Update f̂ by adding a shrunken version of f̂ m(x),

f̂ (x)← f̂ (x)+λ f̂ m(x).

(c) Update the residuals

ri← ri−λ f̂ m(x)

3. Return the boosted model

f̂ (x) =
M

∑
m=1

λ f̂ m(x)

• Using a fairly small d often works well.

• With d = 1 this fits an additive model.

• Small values of λ , e.g. 0.01 or 0.001, often work well.

• M is generally chosen by cross-validation.

References on Boosting

P. Bühlmann and T. Hothorn (2007). “Boosting algorithms: regularization,
prediction and model fitting (with discussion),” Statistical Science, 22(4),477–
522.

Andreas Mayr, Harald Binder, Olaf Gefeller, Matthias Schmid (2014). “The
evolution of boosting algorithms - from machine learning to statistical mod-
elling,” Methods of Information in Medicine 53(6), arXiv:1403.1452.

13

http://arxiv.org/abs/1403.1452

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

California Air Pollution Data

• Load data and split out a training sample:

library(SemiPar)
data(calif.air.poll)
library(mgcv)
train <- sample(nrow(calif.air.poll), nrow(calif.air.poll) / 2)

• Fit the additive linear model to the training data and compute the mean
square prediction error for the test data:

fit <- gam(ozone.level ˜ s(daggett.pressure.gradient)
+ s(inversion.base.height)
+ s(inversion.base.temp),

data=calif.air.poll[train,])
mean((calif.air.poll$ozone.level[-train] -

predict(fit, calif.air.poll[-train,]))ˆ2)

• Fit a tree to the training data using all pedictors:

library(rpart)
tree.ca <- rpart(ozone.level ˜ ., data = calif.air.poll[train,])
mean((calif.air.poll$ozone.level[-train] -

predict(tree.ca, calif.air.poll[-train,]))ˆ2)

• Use bagging on the training set:

library(randomForest)
bag.ca <- randomForest(ozone.level ˜ .,

data = calif.air.poll[train,],
mtry = ncol(calif.air.poll) - 1)

mean((calif.air.poll$ozone.level[-train] -
predict(bag.ca, calif.air.poll[-train,]))ˆ2)

14

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Fit a random forest:

rf.ca <- randomForest(ozone.level ˜ .,
data = calif.air.poll[train,])

mean((calif.air.poll$ozone.level[-train] -
predict(rf.ca, calif.air.poll[-train,]))ˆ2)

• Use gbm from the gbm package to fit booted regression trees:

library(gbm)
boost.ca <- gbm(ozone.level ˜ ., data = calif.air.poll[train,],

n.trees = 5000)
mean((calif.air.poll$ozone.level[-train] -

predict(boost.ca, calif.air.poll[-train,],
n.trees = 5000))ˆ2)

boost.ca2 <- gbm(ozone.level ˜ ., data = calif.air.poll[train,],
n.trees = 10000, interaction.depth=2)

mean((calif.air.poll$ozone.level[-train] -
predict(boost.ca2, calif.air.poll[-train,],

n.trees = 5000))ˆ2)

• Results:

gam 18.34667
tree 26.94041
bagged 21.35568
randomForest 19.13683
boosted 19.90317 M = 5000

19.04439 M = 5000,d = 2

These results were obtained without first re-scaling the predictors.

15

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Support Vector Machines

• Support vector machines are a method of classification.

• The simplest form is for binary classification with training data (x1,y1), . . . ,(xn,yn)
with

xi ∈ Rp

yi ∈ {−1,+1}

• Various extensions to multiple classes are available; one uses a form of
majority vote among all pairwise classifiers.

• Extensions to continuous resposes are also available.

• An R implementation is svm in package e1071.

Support Vector Classifiers

• A linear binary classifier is of the form

G(x) = sign(xT
β +β0)

• One way to choose a classifier is to minimize a penalized measure of
misclassification

min
β ,β0

n

∑
i=1

(1− yi f (x))++λ‖β‖2

with f (x) = xT β +β0.

– The misclassification cost is zero for correctly classified points far
from the bundary

– The cost increases for misclassified points farther from the bound-
ary.

16

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The misclassification cost is qualitatively similar to the negative log-
likelihood for a logistic regression model,

ρ(yi, f (x)) =−yi f (x)+ log
(

1+ eyi f (x)
)
= log

(
1+ e−yi f (x)

)

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y f(x)

M
is

cl
as

si
fic

at
io

n
C

os
t

Logistic
Support Vector

• The support vector classifier loss function is sometimes called hinge loss.

• Via rewriting in terms of equivalent convex optimization problems it can
be shown that the minimizer β̂ has the form.

β̂ =
n

∑
i=1

α̂iyixi

for some values α̂i ∈ [0,1/(2λ)], and therefore

f̂ (x) = xT
β̂ + β̂0 = β̂0 +

n

∑
i=1

α̂iyixT xi = β̂0 +
n

∑
i=1

α̂iyi〈x,xi〉

• The values of α̂i are only non-zero for xi close to the plane f (x) = 0.
These xi are called support vectors.

17

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• To allow for non-linear decision boundaries, we can use an extended
feature set

h(xi) = (h1(xi), . . . ,hM(xi))

• A linear boundary in RM maps down to a nonlinear boundary in Rp.

• For example, for p = 2 and

h(x) = (x1,x2,x1x2,x2
1,x

2
2)

then M = 5 and a linear boundary in R5 maps down to a quadratic bound-
ary in R2.

• The estimated classification function will be of the form

f̂ (x) = β̂0 +
n

∑
i=1

α̂iyi〈h(x),h(xi)〉= β̂0 +
n

∑
i=1

α̂iyiK(x,xi)

where the kernel function K is

K(x,x′) = 〈h(x),h(x′)〉

• The kernel function is symmetric and positive semi-definite.

• We don’t need to specify h explicitly, only K is needed.

• Any symmetric, positive semi-definite function can be used.

• Some common choices:

dth degree polynimial:K(x,x′) = (1+ 〈x,x′〉)d

radial basis:K(x,x′) = exp(−‖x− x′‖2/c)
neural network:K(x,x′) = tanh(a〈x,x′〉+b)

• The parameter λ in the optimization criterion is a regularization param-
eter. It can be chosen by cross-validation.

• Particular kernels and their parameters also need to be chosen.

– This is analogous/equivalent to choosing sets of basis functions.

• Smoothing splines can be expressed in terms of kernels as well

– this leads to reproducing kernel Hilbert spaces
– this does not lead to the sparseness of the SVM approach

18

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

An Artificial Example

Classify random data as above or below a parabola:

x1 <- runif(100)
x2 <- runif(100)
z <- ifelse(x2 > 2 * (x1 - .5)ˆ2 + .5, 1, 0)
plot(x1,x2,col=ifelse(z, "red", "blue"))
x <- seq(0,1,len=101)
lines(x, 2* (x - .5)ˆ2 + .5, lty = 2)

Fit a support vector classifier using λ = 1
2cost :

> library(e1071)
> fit <- svm(factor(z) ˜ x1 + x2, cost = 10)
> fit

Call:
svm(formula = factor(z) ˜ x1 + x2, cost = 10)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 10

gamma: 0.5

Number of Support Vectors: 17

plot(fit, data.frame(z=z,x1=x1,x2=x2), formula = x2 ˜ x1, grid=100)

19

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

0
1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

x

x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

SVM classification plot

x1

x2

20

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Neural Networks

• Neural networks are flexible nonlinear models.

• They are motivated by simple models for the working of neurons.

• They connect input nodes to output nodes through one or more layers of
hidden nodes

• The simplest form is the feed-forward network with one hidden layer,
inputs x1, . . . ,xp and outputs y1, . . . ,yk

– a graphical representation:

input
layer

x1��
��

x2��
��

x3��
��

hidden
layer

z1��
��

z2��
��

z3��
��

z4��
��

output
layer

y1��
��

y2��
��

���
���

��

XXXXXXXX
c
c
c
c
c
c
cc

S
S
S
S
S
S
S
S
S
S

#
#
#
#
#
#
##

��
��

��
��

PPPPPPPP

c
c
c
c
c
c
cc

�
�
�
�
�
�
�
�
�
�

#
#
#
#
#
#
##

��
���

���

XXXXXXXX

@
@
@
@
@
@
@@

HHH
HHH

HH
H
HHH

HHHH�
��

�
��

��

��
��

�
��
�

�
�
�
�
�
�
��

– mathematical form:

zm = h(α0m + xT
αm)

tk = β0k + zT
βk

fk(x) = gk(T)

The activation function h is usually a sigmoidal function, like the
logistic CDF

h(x) = 1/(1+ e−x)

– For regression there is usually one output with g1(t) the identity
function.

21

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– For binary classification there is usually one output with g1(t) =
1/(1+ e−t)

– For k-class classification with k > 2 usually there are k outputs, cor-
responding to binary class indicator data, with

gk(t) =
etk

∑ j et j

This is often called a softmax criterion.

22

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• By increasing the size of the hidden layer M a neural network can uni-
formly approximate any continuous function on a compact set arbitrarily
well.

• Some examples, fit to n = 101 data points using function nnet from
package nnet with a hidden layer with M = 5 nodes:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

y1

f(x) = x

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y2

f(x) = sin(2πx)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y3

f(x) = sin(4πx)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y4

f(x) = I(x ≥ 1 2)

23

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Fitting is done by maximizing a log likelihood L(α,β) assuming

– normal errors for regression

– a logistic model for classification

• The likelihood is highly multimodal and the parameters are not identified

– relabeling hidden nodes does not change the model, for example

– random starting values are usually used

– parameters are not interpretable

• If M is large enough to allow flexible fitting then over-fitting is a risk.

• Regularization is used to control overfitting: a penalized log likelihood
of the form

L(α,β)−λ (∑
m
‖αm‖2 +∑

k
‖βk‖2)

is maximized.

– For this to make sense it is important to center and scale the features
to have comparable units.

– This approach is referred to as weight decay and λ is the decay pa-
rameter.

• As long as M is large enough and regularization is used, the specific
value of M seems to matter little.

• The weight decay parameter is often determined by N-fold cross valida-
tion, often with N = 10

• Because of the random starting points, results in repeated runs can differ.

– one option is to make several runs and pick the best fit

– another is to combine results from several runs by averaging or ma-
jority voting.

24

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Fitting a neural net to the artificial data example:

nnet(z ˜ x1 + x2, size=10, entropy = TRUE, decay = .001,
maxit = 300)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

25

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Recognizing Handwritten Digits

• Data consists of scanned ZIP code digist from the U.S. postal service.
Available at http://yann.lecun.com/exdb/mnist/ as a bi-
nary file.

Training data consist of a small number of original images, around 300,
and additional images generated by random shifts. Data are 28×28 gray-
scale images, along with labels.

This has become a standard machine learning test example.

• Data can be read into R using readBin.

• The fit, using 6000 observations and M = 100 nodes in the hidden layer
took 11.5 hours on r-lnx400:

fit <- nnet(X, class.ind(lab), size = 100,
MaxNWts = 100000, softmax = TRUE)

and produced a training misclassification rate of about 8% and a test
misclassification rate of about 12%.

• Other implementations are faster and better for large problems.

26

http://yann.lecun.com/exdb/mnist/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Deep Learning

• Deep learning models are multi-level non-linear models

• A supervised model with observed responses Y and features X with M
layers would be

Y ∼ f1(y|Z1),Z1 ∼ f2(z1|Z2), . . . ,ZM ∼ fM(zM|X)

with Z1, . . . ,ZM unobserved latent values.

• An unsupervised model with observed features X would be

X ∼ f1(x|Z1),Z1 ∼ f2(z1|Z2), . . . ,ZM ∼ fM(zM)

• These need to be nonlinear so they don’t collapse into one big linear
model.

• The layers are often viewed as capturing features at different levels of
granularity.

• For image classification these might be

– X : pixel intensities

– Z1: edges

– Z2: object parts (e.g. eyes, noses)

– Z3: whole objects (e.g. faces)

• Multi-layer, or deep, neural networks are one approach, that has become
very successful.

27

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Deep learning methods have become very successful in recent years due
to a combination of increased computing power and algorithm improve-
ments.

• Some key algorithm developments include:

– Use of stochastic gradient descent for optimization.

– Backpropagation for efficient gradient evaluation.

– Using the piece-wise linear Rectified Linear Unit (ReLU) activation
function

ReLU(x) =

{
x if x≥ 0
0 otherwise.

– Specialized structures, such as convolutional and recurrent neural
networks.

– Use of dropout, regularization, and early stopping to avoid over-
fitting.

28

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Stochastic Gradient Descent

• Gradient descent for minimizing a function f tries to improve a current
guess by taking a step in the direction of the negative gradient:

x′ = x−η∇ f (x)

• The step size η is sometimes called the learning rate.

• In one dimension the best step size near the minimum is 1/ f ′′(x).

• A step size that is too small converges to slowly; a step size too large
may not converge at all.

• Line search is possible but may be expensive.

• Using a fixed step size, with monitoring to avoid divergence, or using a
slowly decreasing step size are common choices.

• For a DNN the function to be minimized with respect to parameters A is
typically of the form

n

∑
i=1

Li(yi,xi,A)

for large n.

• Computing function and gradient values for all n training cases can be
very costly.

• Stochastic gradient descent at each step chooses a random minibatch of B
of the training cases and computes a new step based on the loss function
for the minibatch.

• The minibatch size can be as small as B = 1.

• Stochastic gradient descent optimizations are usually divided into epochs,
with each epoch expected to use each training case once.

29

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Backpropagation

• Derivatives of the objective function are computed by the chain rule.

• This is done most efficiently by working backwards; this corresponds to
the reverse mode of automatic differentiation.

• A DNN with two hidden layers can be represented as

F(x;A) = G(A3H2(A2H1(A1x)))

If G is elementwise the identity, and the Hi are elementwise ReLU, then
this is a piece-wise linear function of x.

• The computation of w = F(x;A) can be broken down into intermediate
steps as

t1 = A1x z1 = H1(t1)
t2 = A2z1 z2 = H2(t2)
t3 = A3z2 w = G(t3)

• The gradient components are then computed as

B3 = ∇G(t3)
∂w
∂A3

= ∇G(t3)z2 = B3z2

B2 = B3A3∇H2(t2)
∂w
∂A2

= ∇G(t3)A3∇H2(t2)z1 = B2z1

B1 = B2A2∇H1x
∂w
∂A1

= ∇G(t3)A3∇H2(t2)A2∇H1(t1)x = B1x

• For ReLU activations the elements of ∇Hi(ti) will be 0 or 1.

• For n parameters the computation will typically be of order O(n).

• Many of the computations can be effectively parallelized.

30

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Convolutional and Recurrent Neural Networks

• In image processing features (pixel intensities) have a neighborhood struc-
ture.

• A convolutional neural network uses one or more hidden layers that are:

– only locally connected;

– use the same parameters at each location.

• A simple convolution layer might use a pixel and each of its 4 neighbors
with

t = (a1R+a2L+a3U +a4D)z

where, e.g.

Ri j =

{
1 if pixel i is immediately to the right of pixel j
0 otherwise.

• With only a small nunber of parameters per layer it is feasible to add tens
of layers.

• Similarly, a recurrent neural network can be designed to handle temporal
dependencies for time series or speech recognition.

31

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Avoiding Over-Fitting

• Both L1 and L2 regularization are used.

• Another strategy is dropout:

– In each epoch keep a node with probability p and drop with proba-
bility 1− p.

– In the final fit multiply each node’s output by p.

This simulates an ensemble method fitting many networks, but costs
much less.

• Random starts are an important component of fitting networks.

• Stopping early, combined with random starts and randomness from stochas-
tic gradient descent, is also thought to be an effective regularization.

• Cross-validation during training can be used to determine when to stop.

32

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Notes and References

• Deep learning methods have been very successful in a number of areas,
such as:

– Image classification and face recognition. AlexNet is a very success-
ful image classifier.

– Google Translate is now based on a deep neural network approach.

– Speech recognition.

– Playing Go and chess.

• Being able to effectively handle large data sets is an important consider-
ation in this research.

• Highly parallel GPU based and distributed architectures are often needed.

• Some issues:

– Very large training data sets are often needed.

– In high dimensional problems having a high signal to noise ratio
seems to be needed.

– Models can be very brittle – small data perturbations can lead to
very wrong results.

– Biases in data will lead to biases in predictions. A probably harmless
example deals with evaluating selfies in social media; there are much
more serious examples.

• Some R packages for deep learning include darch, deepnet, deepr,
domino, h2o, keras.

• Some references:

– A nice introduction was provided by Thomas Lumley in a 2019
Ihaka Lecture

– deeplearning.net web site

– Li Deng and Dong Yu (2014), Deep Learning: Methods and Appli-
cations

– Charu Aggarwal (2018), Neural Networks and Deep Learning.

33

https://en.wikipedia.org/wiki/AlexNet
https://translate.google.com/
https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://deepmind.com/research/alphago/
https://arxiv.org/pdf/1610.08401.pdf
http://karpathy.github.io/2015/10/25/selfie/
http://karpathy.github.io/2015/10/25/selfie/
https://www.stat.auckland.ac.nz/en/about/news-and-events-5/events/events-2019/03/ihaka-lecture-series-2019-deep-learning.html
https://www.stat.auckland.ac.nz/en/about/news-and-events-5/events/events-2019/03/ihaka-lecture-series-2019-deep-learning.html
http://deeplearning.net/
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– A Primer on Deep Learning

– A blog post on deep learning software in R.

– A nice simulator.

Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/keras.Rmd

34

http://www.datarobot.com/blog/a-primer-on-deep-learning/
http://www.rblog.uni-freiburg.de/2017/02/07/deep-learning-in-r/
http://playground.tensorflow.org
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/keras.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/keras.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Mixture of Experts

• Mixture models for prediction of y based on fearures x produce predictive
distributions of the form

f (y|x) =
M

∑
i=1

fi(y|x)πi

with fi depending on parameters that need to be learned from training
data.

• A generalization allows the mixing probabilities to depend on the fea-
tures:

f (y|x) =
M

∑
i=1

fi(y|x)πi(x)

with fi and πi depending on parameters that need to be learned.

• The fi are referred to as experts, with different experts being better in-
formed about different ranges of x values, and f this is called a mixture
of experts.

• Tree models can be viewed as a special case of a mixture of experts with
πi(x) ∈ {0,1}.

• The mixtures πi can themselves be modeled as a mixture of experts. This
is the hierarchical mixture of experts (HME) model.

35

	Some Machine Learning Terminology
	Tree Models
	Bagging, Boosting, and Random Forests
	Bagging: Bootstrap AGGregation
	Random Forests

	Boosting
	References on Boosting
	California Air Pollution Data

	Support Vector Machines
	Support Vector Classifiers
	An Artificial Example

	Neural Networks
	Example: Recognizing Handwritten Digits

	Deep Learning
	Stochastic Gradient Descent
	Backpropagation
	Convolutional and Recurrent Neural Networks
	Avoiding Over-Fitting
	Notes and References

	Mixture of Experts

