
Statistics STAT:7400, Spring 2022 Tierney

Assignment 1

This assignment will give you an opportunity to familiarize yourself with the comput-
ing environment you will be using this semester and to practice writing up computing
assignments.

Before starting this assignment you should read the coding standards document and
the brief introduction to the Git version management system.

You should track your work using a git repository (you can use the same repository
for both problems). Your git repository should have at least 2 commits. When you
are finished with the homework, run the command

git log -p > hw1-gitlog.txt

inside of your Git repository. This command writes the Git log to the text file
hw1-gitlog.txt. Include this file in your submission.

1. The Pareto distribution has density

f(x|α, β) =
βαβ

xβ+1

for 0 < α < x and β > 0. Write a C function to evaluate the Pareto density.
Also write a main program that reads values for the arguments x, α, and β, in
that order, from standard input and prints the value of f(x|α, β) to standard
output. I will test your program using commands of the form

echo 4.0 2.0 3.0 | ./paretodens

In your written report include the code in an appendix, explain how to compile
and run the program, and show a few (two or three) examples of its use. Include
the program files as text files with .c extensions in your submission as well.

2. Write an R function dpareto that computes the density of a Pareto distribution.
Your function should behave like other R density functions, such as dgamma or
dbeta.

Your submission should include a file dpareto.R suitable for reading into R
with the source function. I will test your code using the expressions

source("dpareto.R")

dpareto(x, a, b)

1

https://stat.uiowa.edu/~luke/classes/STAT7400-2022/coding.html
https://stat.uiowa.edu/~luke/classes/STAT7400-2022/git.html

Statistics STAT:7400, Spring 2022 Tierney

with various definitions of x, a, and b.

In your written report include the code for the function in line, show an example
of its use, and show plots of the density for two different sets of parameters.
Include the file dpareto.R in your submission as well.

Some points to keep in mind:

• Negative values of the parameters are not meaningful; how is this handled for
other distributions?

• Densities are defined on the entire real line; they are zero outside of the support
of the distribution.

• Make sure that your code is consistent with the coding standards.

• It is a good idea to compile your C code with all useful warnings enabled and to
eliminate any warnings you find. For the gcc compiler using the options -Wall
-pedantic enables the most useful warnings.

• Make sure the text and code of your writeup are easy to read. Use appropriate
fonts and margins.

• R functions are generally vectorized, i.e. return vectors of results when the
arguments are vectors. Your R function should do this as well.

You should submit your assignment electronically using Icon. Your submission should
include

• your writeup as a PDF file

• one or more source code files containing your programs for Problem 1 and
Problem 2.

• your Git log file.

Submit your work as a single compressed tar file. If your work is in a directory mywork

then you can create a compressed tar file with the command

tar czf mywork.tar.gz mywork

2

http://icon.uiowa.edu

Statistics STAT:7400, Spring 2022 Tierney

Solutions and Comments

General Comments

• Don’t include things not asked for (editor temporary files like foo , .git sub-
directories, executables, etc). To find what is in your archive you can use

tar ztf myfile.tar.gz

• Large margins waste a lot of space. Make sure to set margins appropriately.

• Make sure your code is readable in your writeup.

– Blank lines between every line of code make the code hard to read.

– Tabs is code usually don’t work well in LATEXoutput.

• Use appropriate fonts for text and code.

• Avoid using file names that contain spaces. Many tools don’t work well with
such file names.

• If you are asked to use a particular name for a file or a function you must must
match that name exactly, including capitalization. Otherwise code that uses
your file of function, or automated tests run on them, will fail.

• I will only use and ask for R code files with a .R extension.

• R code files should usually only include code, not tests or examples (unless they
are commented out in a useful way).

Problems

1. • Make sure your program compiles on the Linux systems at least, and check
it again after you make changes, even small ones.

• Densities are usually defined for all real arguments. If a distribution has
limited support then the density is zero outside the support.

• It is a good idea to compile your C programs with as many warnings
enabled as possible. With the gcc compiler on the Linux systems, using
the flags -Wall -pedantic does this.

• Programs in any language other than machine language are intended to
be read by humans. You should try to make your programs as readable as
possible.

3

Statistics STAT:7400, Spring 2022 Tierney

– Proper indentation of looping and conditional structures makes pro-
grams more readable. There are even some languages, such as Python,
where indentation is part of the language syntax! For C, the emacs

editor can help you indent your code–hitting the TAB key will make
emacs indent to the place it thinks appropriate. If the code is not
being placed where you think it should go then you probably have a
syntax error, such as a missing or extra parenthesis or a missing semi-
colon. You can also use the program indent to indent your C source
code according to a reasonable style.

– I have a strong prference for indenting by 4 spaces at each level.

– Spaces around operators and after commas also help make your code
more readable.

– Avoid having tab characters in your code — your editor should be
able to replace those with spaces.

– Review the coding standards document1 and try to follow them.

– The indent program can help; a reasonable result is obtained with

indent -kr -nce -nut foo.c -o foo-indent.c

• If there are range restrictions on your parameters then you should check
for those and do something to signal violations in some way. Do not just
return whatever value the formula happens to compute — it will be invalid.

• When asked to show examples you should show the terminal interaction
in a displayed paragraph in an appropriate font; do not describe what
happens in words and do not show screen shots.

• Be sure to put your code in an appendix as requested.

• I used to following code to test your programs:

echo 3 2 1 | ./paretodens # 0.2222

echo 1 2 3 | ./paretodens # 0.0

echo 3 -2 1 | ./paretodens # error

echo 3 2 -1 | ./paretodens # error

2. • Densities are usually defined for all real arguments. If a distribution has
limited support then the density is zero outside the support.

• Programs in any language other than machine language are intended to
be read by humans. You should try to make your programs as readable as
possible.

– Proper indentation of looping and conditional structures makes pro-
grams more readable. There are even some languages, such as Python,
where indentation is part of the language syntax! For R, the emacs

editor with the ESS package can help you indent your code–hitting the

1http://www.stat.uiowa.edu/ luke/classes/STAT7400/coding/coding.html

4

http://www.stat.uiowa.edu/~luke/classes/STAT7400/coding/coding.html

Statistics STAT:7400, Spring 2022 Tierney

TAB key will make emacs indent to the place it thinks appropriate.
If the code is not being placed where you think it should go then you
probably have a syntax error, such as a missing or extra parenthesis
or a missing semicolon.

– Spaces around operators and after commas also help make your code
more readable.

– Review the coding standards document2 and try to follow them.

– The formatR package can be useful, for example:

Rscript -e ’formatR::tidy_source("foo.R")’

• If there are range restrictions on your parameters then you should check for
those and do something to signal violations in some way. You can either
return NA, and perhaps signal a warning, or signal an error by calling stop.
Do not just return whatever value the formula happens to compute — it
will be invalid. Also do not return an error message as a text string as this
makes life much harder for code that uses your function.

• Functions like dgamma return NaN and signal a warning for invalid parame-
ters. It is best to follow convention unless there is a compelling reason not
to.

• You were explicitly asked to name your file dpareto.R. Doing this is im-
portant if other code, such as my test code, is going to look for a file with
that name.

• Your file should only contain code defining the function, not test code.
Test code can be placed in a different file.

• You should take advantage of vectorized arithmetic whenever possible.
Loops and looping functions like lapply and friends will be much less
efficient.

• To match the behavior of other density functions your function should be
vectorized. Your handling of bad parameter values and restrictions on the
support of the distribution should also take vector input into account. The
ifelse function can be useful for this.

• The standard density functions all support a log argument. Yours should
do this as well.

• If you support the log argument, it is almost always better to compute on
the log scale and return exp of the result than the other way around.

• When plotting a function, line plots for the continuous parts make more
sense than point plots. Some thought is needed on how to handle discon-
tinuities.

2http://www.stat.uiowa.edu/ luke/classes/STAT7400/coding/coding.html

5

http://www.stat.uiowa.edu/~luke/classes/STAT7400/coding/coding.html

Statistics STAT:7400, Spring 2022 Tierney

• When plotting two related densities it is a good idea to help the reader
compare the results either by plotting two densities on the same plot or
by placing two plots with identical axes next to each other.

• Be consistent in using = or <- for assignment; <- is strongly preferred.

• Make sure your result is returned visibly.

• Make sure to distinguish between the logical operators && and || and the
vectorized functions & and |.

• Calls to return() are only needed for early exit.

• Be sure to include the function code in line in your writeup.

• I used the following code to test your functions:

dpareto(3, 2, 1) # 0.2222222

dpareto(1, 2, 3) # 0.0

dpareto(3, -2, 1) # error

dpareto(3, 2, -1) # error

dpareto(3 : 5, 2, 1) # 0.2222222 0.1250000 0.0800000

dpareto(1 : 5, 2, 1) # 0.0 0.0 0.2222222 0.1250000 0.0800000

dpareto(6, 2 : 4, 1) # 0.05555556 0.08333333 0.11111111

dpareto(3, 2, 1, log = TRUE) # -1.504077

6

