
Statistics STAT:7400, Spring 2022 Tierney

Assignment 6

1. Revise your R package pareto to compute the pareto density, CDF, and quantile
function using C code. A version of the AddOne package that uses C code for
its computations can serve as an example. This uses a mechanism for C routine
registration that is currently mandatory for CRAN submissions. You can use
the

package_native_routine_registration_skeleton

function in the tools package to generate this registration code. This package
also uses the .registration and .fixes arguments with useDynLib in the
NAMESPACE file.

Your package should pass R CMD check without errors or warnings. You should
submit your package as a source package file created by R CMD build.

Also commit and push your revised package code to your class GitLab reposi-
tory.

2. This problem is based on the BrainWeb artificial brain imaging data base, which
is used for assessing the performance of brain image processing methods. The
data are available on the workstations in

/group/statsoft/data/Brainweb/images

The motivating problem is classifying individual volume elements (or voxels) in
an image into the three major brain tissue types (gray matter, white matter, and
cerebro-spinal fluid) based on MR images. Several image types are available;
this problem will look at a T1 image, the type most commonly used for tissue
classification. The Wikibedia page

http://en.wikipedia.org/wiki/Magnetic_resonance_imaging

provides some useful background.

Brain images are large 3D arrays and some care is used in storing them to reduce
size and allow for efficient access to full images or slices of images. A number of
structured file formats are in use, including Minc, Analyze, and Niftii. The data
we will use is in a simple binary form that can easily be read using readBin. A
simple function to do this is

readVol <- function(fname, dim = c(181, 217, 181)) {

f<-gzfile(fname, open="rb")

on.exit(close(f))

b<-readBin(f,"integer",prod(dim),size = 1, signed = FALSE)

array(b, dim)

}

1

http://www.stat.uiowa.edu/~luke/classes/STAT7400-2021/examples/AddOne_1.3-3.tar.gz
http://www.bic.mni.mcgill.ca/brainweb/
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging

Statistics STAT:7400, Spring 2022 Tierney

The data have been scaled and rounded to an integer value between 0 and 255
and encoded as an unsigned byte.

The particular image we will use is stored in the file

/group/statsoft/data/Brainweb/images/T1/t1_icbm_normal_1mm_pn3_rf20.rawb.gz

In this problem we will ignore the spatial structure of the images and fit a
normal mixture model to the image intensities. This model can then be used
to classify the voxels into the three tissue types.

(a) Read the data and use the image function to plot a middle slice along each
axis of the three-dimensional array.

(b) A first step in brain tissue classification is to identify the part of the image
corresponding to the brain. This is often done by specialized pre-processing
methods; a mask image, in the same format as the T1 image, with volume
elements in the brain coded as one and elements outside the brain as zero
is available in

/group/statsoft/data/Brainweb/images/mask.rawb.gz

Read in the mask and plot an estimate of the density of the image inten-
sities for voxels in the brain. You should see three peaks; the lower one
corresponds to cerebro-spinal fluid (CSF), the middle one to gray matter,
and the higher one to white matter.

(c) Write a function to fit a normal mixture model by the EM algorithm and
use the function to fit a model to the intensities within the brain. You can
use the single step EMmix1 functon from the class notes.

(d) Write a function that takes the intensities and the normal moxture param-
eters and returns for each voxel the index of the most likely tissue class for
that voxel. The E step computations and the function max.col may be
useful. Show the result using the image function for the same slices used
in the first part of this problem.

(e) The EM calculation may be rather slow. Use profiling tools Rprof and
summaryRprof to see where your code is spending most of its time.

(f) Can you improve peformance by taking advantage of the fact that the
intensities can take on only a relatively small number of distinct values?

Your submission should include your source package archive for Problem 1 and a pdf
file with your writeup, and text files with a .R extension with your code for Problem
2.

You should submit your assignment electronically using Icon. Submit your work as
a single compressed tar file. If your work is in a directory mywork then you can create
a compressed tar file with the command

2

http://icon.uiowa.edu

Statistics STAT:7400, Spring 2022 Tierney

tar czf mywork.tar.gz mywork

3

Statistics STAT:7400, Spring 2022 Tierney

Solutions and Comments

1. � Please follow the coding standards on use of spaces, indentation and long
lines.

� It is a good idea to use the registration mechanism.

– When using the registration mechanism then it is a good idea to make
as many definitions static as possible; using a single file for your C
code helps.

– If you want to use multiple files use the attribute hidden prefix. Or
you can make all symbols invisible by default and selectively enable
some with attribute visible. The Controlling Visibility section of
the extensions manual gives details.

– It is also a good idea to use optional arguments to useDynLib to
define variables for your entry points which You can use instead of
using strings in your .C calls — this can improve performance.

� Your package should pass R CMD check without errors, warnings, or notes.

� Make sure to include a reasonable set of tests in your code.

� When using .C you should:

– Check that scalar arguments like log.p have at least one element.

– Use as.double or as.integer to make sure that the values passed to
.C have the right types.

� You should use the constants NA REAL, R NaN, R PosInf or R NegInf in C
code when you need these values.

� If you issue warnings make sure to do so only once per call — do not call
warning or error inside your C loop.

� Be sure to follow the coding standards in you R and your C code.

� Make sure you push your changes to your class GitLab repository.

� You should only export those variable that you want to be public; don’t
just export all variables.

2. Some notes:

� It helps to use a good qualitative color scheme for showing the classification
results in part (d). Some resources:

– HCL Wizard

– ColorBrewer.

� The axes and labels provided by default in image plots are not useful in
this case.

� It is a good idea to use an appropriate aspect ratio for these images.

4

http://hclwizard.org/
http://colorbrewer2.org

Statistics STAT:7400, Spring 2022 Tierney

– A poor aspect ratio can be distracting:

library(ggplot2)

ggplot(map_data("state")) +

geom_polygon(aes(long, lat, group = group),

fill = "white", color = "black")

– Aspect ratio can affect what we see:

river <- scan("https://www.stat.uiowa.edu/~luke/data/river.dat")

plot(river)

� It is a good idea to describe the convergence criterion used for the EM
algorithm. A relative error on the order of 10−8 might be reasonable.
Using too large a tolerance can cause problems.

� The classification can be computed with a vectorized expression, for ex-
ample as

tclass <- function(x, theta) {

mu <- theta$mu

sigma <- theta$sigma

p <- theta$p

M <- length(mu)

Ez <- outer(x, 1:M, function(x, i) p[i] * dnorm(x, mu[i], sigma[i]))

max.col(Ez, ties.method = "first")

}

The image can then be filled in with

cl <- array(NA, dim(T1))

cl[mask] <- tclass(v, res$pars)

� For part (f), there are only a few hundred distinct intensity values, and the
function tabulate can be used to determine how often each occurs. The
EM computations can be rewritten to carry out each distinct calculation
once and multiply by the appropriate count. This is easiest to do by
modifying the EM step to take a weights argument:

EMmix1W <- function(x, w, theta) {

mu <- theta$mu

sigma <- theta$sigma

p <- theta$p

M <- length(mu)

E step

Ez <- outer(x, 1:M, function(x, i) p[i] * dnorm(x, mu[i], sigma[i]))

Ez <- sweep(Ez, 1, rowSums(Ez), "/")

EzW <- sweep(Ez, 1, w, ‘*‘)

5

Statistics STAT:7400, Spring 2022 Tierney

colSums.EzW <- colSums(EzW)

M step

xpW <- sweep(EzW, 1, x, "*")

mu.new <- colSums(xpW) / colSums.EzW

sqRes <- outer(x, mu.new, function(x, m) (x - m)^2)

sigma.new <- sqrt(colSums(EzW * sqRes) / colSums.EzW)

p.new <- colSums.EzW / sum(colSums.EzW)

pack up result

list(mu = mu.new, sigma = sigma.new, p = p.new)

}

This can be tested and compared to the original EM step with

counts <- table(as.vector(v))

vv <- sort(unique(as.vector(v)))

EMmix1W(vv, counts, theta)

� Binning or discretization can be useful for some large data set computa-
tions; for example

http://vita.had.co.nz/papers/bigvis.html

https://github.com/hadley/bigvis

� A recent blog post describes approaches to binning in a data base.

6

http://vita.had.co.nz/papers/bigvis.html
https://github.com/hadley/bigvis
https://www.rkingdc.com/blog/2019/2/28/binning-columns-in-remote-tables-with-dplyr-and-rquery

