
Some changes in snow and R

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

December 13, 2007

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 1 / 22

Some Comments on the Course

Some new ideas for me:

Grid computing
MapReduce
OpenMP

Some opportunities:

Rethink some aspects of snow design
Make progress on parallel vectorized arithmetic for R

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 2 / 22

Some Open snow Issues

better error handling

integrating load balancing into all functions

R-level collection of timing information

non-parallel testing framework

persistent data on nodes

limited inter-node communication

sensible handling of user interrupts

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 3 / 22

Some snow Changes
Error Handling

Errors in clusterXYZ functions used to be returned as try-error
objects.

New version will signal an error on the master if there is an error on
any node.

This is better but not always ideal: Sometimes one good result is
enough.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 4 / 22

Some snow Changes
Argument Length Limits

Originally clusterApply required at most as many elements as
cluster nodes.

Longer lists can be handled by clusterApplyLB

This does not provide a deterministic option for longer vectors.

It also leaves out the new clusterMap function.

The new version allows longer vectors.

By default nodes are recycled.

This produces deterministic job/node assignments.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 5 / 22

Some snow Changes
Integrating Load Balancing

Load balancing might be useful with functions other than just
clusterApply.

Motivated by OpenMP, one option is to

allow a SCHEDULE argument with values "static" or "dynamic" got
all functions
a variant is to allow a boolean LoadBalance argument
have the parXYZ functions take a ChunkSize argument

Default will be static.

Open question: can parallel RNG streams be tied to jobs in a simple
way so results from with load-balancing can be reproducible?

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 6 / 22

Some snow Changes
Collecting Timing Information in R

xpvm is very useful, but requires pvm.

xmpi is similar but restricted to LAM.

An alternative is to collect timing information in R:

In the master record the start and finish of each send/recv.
In the nodes, record duration of computation and send back with result.

Need to decide interface for collecting the data.

One possibility, motivated by Rprof:
traceCluster(file=’’foo.trace’’) to start recording to a file
traceCluster(NULL) to stop recording

Then need some functions to read trace file and produce graphs.

Will experiment with this in the next month or so.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 7 / 22

Some snow Changes
Non-Parallel Testing Framework

It may be useful to have a “null cluster” so that

cl <- makeNULLcluster(4)
clusterApply(cl, ...)

works within the master process

This will help with

debugging
running small jobs without parallel complications

Some detail issues:

should the cluster size argument matter?
should random number streams behave as in the parallel version?

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 8 / 22

Some snow Changes
Persistent Data

It can be useful to leave large computed values on nodes for further
computation.

Global variables can be used but are awkward and not very clean.

A better option may be to have a means of returning only a remote
object reference.

These remote objects can then be passed to subsequent calls.

Once the master no longer has a reference to a remote object it can
be garbage collected.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 9 / 22

Some snow Changes
Limited Data Transfer Between Nodes

A next step is to allow remote data to move between nodes, e.g.

think of the nodes as arranged in a circle
each node passes its data to the node to its left

This leads to a model called Bulk Synchronous Parallel (BSP)
computing.

BSP has some interesting theoretical properties

a cost model for comparing parallel algorithms in terms of simple
machine parameters
deadlock-free

BSP has been used as the basis for parallel computing support for
several high level languages.

An initial (and maybe inefficient) BSP extension may be available
soon.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 10 / 22

Parallelizing Vector Operations
An Idealized View

Basic idea for computing f(x[1:n]) on a two-processor system:

Run two worker threads.
Place half the computation on each thread.

Ideally this would produce a two-fold speed up.

Parallel

Sequential n

n/2

n/2

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 11 / 22

Parallelizing Vector Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential

n/2

n/2

n

There is synchronization overhead.

Use of shared resources is sequential (memory, bus, . . .)

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to insure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 12 / 22

Parallelizing Vector Operations
Some Experimental Results

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

qnorm, Linux/AMD/x86_64

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

pgamma, Linux/AMD/x86_64

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

qnorm, Mac OS X/Intel/i386

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

pgamma, Mac OS X/Intel/i386

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 13 / 22

Parallelizing Vector Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.

Intercepts on a given platform are roughly the same for all functions.

If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 14 / 22

Parallelizing Vector Operations
A Calibration Strategy

A simple strategy:

Compute relative slopes once, or average across several setups.
Base line is a single element dnorm computation.
For each OS/architecture combination compute the intercepts.
Estimate the values N2(f) such that using P = 2 is faster if n > N2(f).
Use N4(f) = 2N2(f) and N8(f) = 4N2(f).

Some intercepts, in units of a single element dnorm computation:

about 200 for Linux/AMD/x86 64
about 500 for Mac OS X 10.4/Intel/i386
between 300 and 400 for Win32/Intel(?)

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 15 / 22

Parallelizing Vector Operations

qtukey

ptukey

qbeta

pbeta

qgamma

pgamma

dgamma

qnorm

pnorm

dnorm

exp

cos

sin

sqrt

0 500 1000 1500 2000

Some N2(f) Values on Linux

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 16 / 22

Parallelizing Vector Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

gcc 4.2 supports Open MP.

Redhat has back-ported Open MP into gcc 2.4.1 on RH, Fedora.

MinGW also supports Open MP; an additional pthreads download is
needed.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 17 / 22

Parallelizing Vector Operations
Implementation

Basic loop for a one-argument function:
#pragma omp parallel for if (P > 1) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Steps in converting to Open MP:

check f is thread-safe; modify if not
rewrite loop to work with the Open MP directive
test without Open MP, then enable Open MP

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 18 / 22

Parallelizing Vector Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions
Wilcoxon, signed rank functions
random number generators

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 19 / 22

Parallelizing Vector Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that
supports Open MP
allows dlopen to be used on libgomp.so

Our current systems don’t satisfy this.

A version using just pthreads is available in pnmath0. This should
work on current R on our systems.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R 2.7 or 2.8.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 20 / 22

http://www.stat.uiowa.edu/~luke/R/experimental/

Connection to Compilation

Developing a byte code compiler for R is an ongoing project.

The codetools package is a by-product.

Compilation will also be useful for parallelizing vector operations:

Many vector operations occur in compound expressions, like

exp(-0.5*x^2)

A compiler may be able to fuse these operations:

SQUARE

SQUARE

SCALE

SCALE EXP

EXP

EXPSQUARE SCALE

SQUARE SCALE EXP

Compiled, fused

Interpreted

Sequential SQUARE SCALE EXP

Compilation may also allow many simple uses of apply functions and
sweep to be parallelized.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 21 / 22

Challenges

Tuning issues:

Hardware/OS plays a role.
Competing system usage may be important.
Performance may vary with inputs.
Load balancing may be useful.

Error handling and user interrupts.

Parallelization interface for package use.

Extensible byte code for package use.

Generic functions and non-default methods.

Declarations may be useful.

Luke Tierney (U. of Iowa) Some changes in snow and R December 13, 2007 22 / 22

