
snow: Simple Network of Workstations

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

September 13, 2007

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 1 / 17

Motivation and Background

Objective: shared memory parallel computing using R.

Several tools are available, including

raw socket (socketConnection, serialize, unserialize)
rpvm package
Rmpi package

Also available: parallel random number generators, including

rsprng package
rlecuyer package
rstreams package

PVM and MPI are very powerful but also complex.

Want higher level facilities that

make it easy to do simple scatter-compute-gather computations
can transparently use different communication back ends
simplify handling of random number generation

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 2 / 17

The snow Package

snow is a parallel computing package for R

snow is motivated by the CoW package from Scientific Python.

snow uses a master/worker model:

The user starts an ordinary R session as the master process.
This session creates (or connects to) a set of worker processes.
Jobs are sent to the worker processes and results are returned.

The underlying message passing can be based on

raw sockets (no additional packages/software needed)
PVM (uses rpvm and PVM)
MPI (uses Rmpi and LAM-MPI; other MPIs may also work)

Which communication mechanism is used only matters at startup.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 3 / 17

Starting a snow Cluster

Start up PVM or LAM-MPI
Start up R on the master node and load the snow package (if
necessary).
Create a cluster of 10 worker processes with

cl <- makeCluster(10)

Find out where the processes are running:
> do.call("rbind", clusterCall(cl, function(cl)

Sys.info()["nodename"]))

nodename

[1,] "node02.beowulf.stat.uiowa.edu"

[2,] "node03.beowulf.stat.uiowa.edu"

[3,] "node04.beowulf.stat.uiowa.edu"

[4,] "node05.beowulf.stat.uiowa.edu"

[5,] "node06.beowulf.stat.uiowa.edu"

[6,] "node07.beowulf.stat.uiowa.edu"

[7,] "node08.beowulf.stat.uiowa.edu"

[8,] "node09.beowulf.stat.uiowa.edu"

[9,] "node10.beowulf.stat.uiowa.edu"

[10,] "node00.beowulf.stat.uiowa.edu"

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 4 / 17

Stopping a snow Cluster

To stop the worker processes use

stopCluster(cl)

then shut down PVM or LAM-MPI

Some back ends may allow another makeCluster after a
stopCluster, others may not.

If you forget to call stopCluster before exiting R

For PVM, halt the PVM.
For LAM-MPI, use lamhalt or, if that fails, lamwipe.
For sockets, workers should just stop; if not, you need to clean up by
hand.
If things did not end cleanly be sure to check for stray R, pvmd, or
lamd processes on the nodes you used.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 5 / 17

Cluster Level Functions

Calling a function on all nodes:

clusterCall(cl, exp, 1)

Evaluating an expression on all nodes:

clusterEvalQ(cl, library(boot))

Apply a function to a list, one element per node

clusterApply(cl, 1:3, get("+"), 3)

It is an error if there are more elements in the list than workers in the
cluster.

A load balanced version:

clusterApplyLB(cl, 1:20, get("+"), 3)

There is no restriction on the length of the list.

Assign values of specified global variables on master on each worker:

clusterExport(cl, c("x", "y")

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 6 / 17

Higher Level Functions

A parallel version of lapply can be defined as
parLapply <- function(cl, x, fun, ...)

docall(c, clusterApply(cl, splitList(x, length(cl)),

lapply, fun, ...))

splitList splits the list argument approximately evenly across the
cluster.

An example using qtukey and a cluster of size 10:
> x<-1:100/101

> system.time(qtukey(x, 2, df=2))

user system elapsed

3.661 0.000 3.662

> system.time(unlist(parLapply(cl, x, qtukey, 2, df=2)))

user system elapsed

0.007 0.000 0.436

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 7 / 17

More Higher Level Functions

Parallel sapply
> parSapply(cl, 1:15, get("+"), 2)

[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Parallel apply
> parApply(cl, matrix(1:10, ncol=2), 2, sum)

[1] 15 40

parCapply and parRapply:
> A<-matrix(c(1,2,3,4,5,6),nrow=2)

> A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> parCapply(cl, A, sum)

[1] 3 7 11

> parRapply(cl, A, sum)

[1] 9 12

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 8 / 17

A (Too) Simple Parallel Matrix Multiply

parMM <- function (cl, A, B) {

if (nrow(A) >= ncol(B))

docall(rbind, clusterApply(cl, splitRows(A, length(cl)),

function(a, B) a %*% B, B))

else

docall(cbind, clusterApply(cl, splitCols(B, length(cl)),

function(b, A) A %*% b, A))

}

Using parMM does not pay for small matrices:
> A<-matrix(rnorm(10000),100)

> system.time(A %*% A)

user system elapsed

0.002 0.000 0.002

> system.time(parMM(cl,A , A))

user system elapsed

0.048 0.008 0.072

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 9 / 17

A (Too) Simple Parallel Matrix Multiply

Using parMM pays (a little) for larger matrices:
> A<-matrix(rnorm(4000000),2000)

> system.time(A %*% A)

user system elapsed

35.306 0.030 35.343

> system.time(parMM(cl,A , A))

user system elapsed

15.125 3.498 29.469

For this algorithm less parallelism is better:
> system.time(parMM(cl[1:4],A , A))

user system elapsed

6.802 1.614 22.521

There are much better algorithms.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 10 / 17

Some Details

Functions and arguments are converted to sequences of bytes and
back using serialization.

This is the same mechanism used for saving R workspaces.

The user level interface is provided by serialize and unserialize.

Non-top-level environments of functions are transmitted as copies.

Some consequences:

Lexical scope can be used to bind constants needed by a function.
Care is needed to avoid unintended transfers of large objects.
Since copies are sent, assignments on workers remain local.

Top-level environments are resolved to top-level environments on the
workers:

.GlobalEnv
name space environments
environments of loaded package or the base package.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 11 / 17

Parallel Random Numbers

Random number generation needs some help:
> clusterCall(cl, runif, 3)

[[1]]

[1] 0.2293371 0.2965413 0.2588331

[[2]]

[1] 0.2293371 0.2965413 0.2588331

....

[[10]]

[1] 0.2293371 0.2965413 0.2588331

Identical streams are very likely but not guaranteed.

If you want identical streams you can set a common seed.

If you want “independent” streams you need something else.

Using random seeds may work.

A better alternative is to use a parallel generator package.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 12 / 17

Using the rlecuyer Package

Several parallel generators are available for R.

These use R’s facility to replace the core uniform generator.

The rlecuyer package provides an interface to the streams library
of L’Ecuyer, Simard, Chen, and Kelton.

The function clusterSetupRNG assigns separate random number
streams to each worker:

> clusterSetupRNG(cl)

> clusterCall(cl, runif, 3)

[[1]]

[1] 0.1270111 0.3185276 0.3091860

[[2]]

[1] 0.7595819 0.9783106 0.6851358

...

[[10]]

[1] 0.2925952 0.3593174 0.2368010

Specifying a seed makes the streams reproducible.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 13 / 17

Starting snow under PVM

There are three ways to start up PVM:

Start the pvm console and add some nodes:
[luke@node00 ~]$ pvm

pvm> add node01 node02 node03

add node01 node02 node03

...

pvm>

Start the pvm console with
[luke@node00 ~]$ pvm pvmhosts

where pvmhosts looks like
node00

node01

...

node21

Use xpvm, which needs a .xpvm hosts file.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 14 / 17

Starting snow under PVM

The .xpvm hosts file looks like
node00

&node01

&node02

...

&node21

nodes marked with & are initially inactive.

Click on the nodes you want to add to the virtual machine.

Do not put xpvm in background — things get confused.

xpvm provides useful visualizations of the computation.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 15 / 17

Running snow under LAM-MPI

There are three ways to run snow under LAM-MPI:

Using process spawning:

Start LAM-MPI with lamboot.
Start R and load the snow package.
Create an MPI cluster with

cl<-makeCluster(type="MPI",3)

Using mpirun
Start LAM-MPI with lamboot.
start R using a special shell script with

mpirun -np 11 RPMISNOW

Get a reference to the running cluster with

cl<-getMPIcluster()

Soon either of these will also work:

cl<-makeCluster()

cl<-makeCluster(10)

Using xmpi and RMPISNOW.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 16 / 17

Running snow under LAM-MPI

To use xmpi:

Start LAM-MPI with lamboot.

Start up xmpi from a terminal.

Choose Build&Run from the Application menu.

Choose the nodes to use.

Enter RMPISNOW in the Prog: field.

Press the Run button.

The master R session will be running in the terminal where you
started xmpi.

Use getMPIcluster to get a reference to the running cluster.

xmpi provides similar visualizations to the ones provided by xpvm.

Luke Tierney (U. of Iowa) snow: Simple Network of Workstations September 13, 2007 17 / 17

	snow: Simple Network of Workstations
	Motivation and Background
	The snow Package
	Basic snow Functions
	Parallel Random Numbers
	Starting the Communication Framework

