
Introduction to PLAPACK

� General facts you need to use PLAPACK
� A bit of related algebra
� Code for this problem
� Some older results for how parallelization

works with this code.

I. Plan:

General Information

On our cluster PLAPACK is installed in:
/cluster/plapack-3.2.1
Notice, that to use PLAPACK we have to work with
MPICH, not LAM MPI. We have a version of MPICH.
To make MPICH default MPI you would need to write in
your .bash_profile something like:

export MPIRUN_HOME=/opt/mpich/ch-p4/bin
export PATH=/opt/mpich/ch-p4/bin:$PATH

More General Information

Make sure you have right paths in the Make.include file
Look into Makefile used to compile program.
Notice, this is the case when you definitely want to use Makefile:
you don't want to type this manually each time. For example:

ParaUltraSlice : #$(SLICEOBJS) #$(PLAPACKLIB)
 $(CC) $(CFLAGS) -c -o ParaUltraSlice.o ParaUltraSlice.c
 $(LINKER) -o ./ParaUltraSlice $(LFLAGS) $(SLICEOBJS)
$(PLAPACKLIB) $(RMATH) $(LIB)

In place of $(CFLAGS) only you have to specify couple lines of
options including location of PLAPACK, type of machine and
operating system, etc.

Model

The model proposed :

y = Xβ+ Z + ε
Z∼N H0, σz

2 Ω HφLL ε∼N H0, σe
2 IL

So, we have some covariate coefficients β,
Z − a vector capturing the spatial correlation

ε − iid measurement errors

Reparametrization and priors

Y∼N HXβ, σz
2 Ω Hφ, ρL + σe

2 IL or if σ2 =
σz

2 + σe
2 and κ = σe

2

σ2

Y∼N HXβ, σ2@H1 − κL Ω Hφ, ρL +κ IDL
placing IG priors on σz

2 and σe
2,

normal on β,
trancated normal on ρ and uniform on φ

Algorithm:
So, the algorithm we

will look at does following

1. Draw HφHkL, ρHkL, κHkL » YL
from p Hφ, ρ, κ » YL

2. Draw σ2 HkL from p Hσ2 » φHkL, ρHkL, κHkL, YL
3. Draw βHkL from
p Hβ» φHkL, ρHkL, σ2 HkL, κk, YL
For the third step

the slice algorithm is used

Lets move to the program

� The MCMC draws are quite time consuming,
and they are sequential.

� The good news is that big part of the
computation time is spent on matrix
operations. This can be parallelized.

� The general setup of the program:
� a) Parallelize matrix computation at each

step
� b) Synchronize, since at the new steps we

will need to use new values of parameters.

Cluster Load

� Here is the picture of nodes activity after
setting -np 16 for 4 nodes. Time 00:20-00.35

Cluster Load (cont)

� Since I couldn't use xmpi I thought we still
may try to get some information from the
general ideas.

� First of all, you may see that all four nodes
were relatively busy all the time with
approximately same load. This at least
suggests that PLAPACK did well in terms of
load balancing.

� The next picture will be about some previous
timing simulations performed for this
program.

Timing

� For timing of this application I would like to
show the simulation results done by
essentially this same algorithm (adapted to
Grid) by the GROW in the year 2006.

Improvement

− Notice that here we see quite similar picture to
some of the previous topics: for small dataset
size there is no improvement and at some point
overhead calculations actually take even more
time than there is a gain.

− For bigger datasets improvement can be quite
substantial: for 12k points dataset it is possible
to get results with 50 processors 10 time as
quick as with one processor.

References

1. Robert A. Van De Geijn. Using PLAPACK. The MIT
Press. 1997
Or online version:
http://www.cs.utexas.edu/~plapack/Guide/Guide_html.html

2. Wenli He and others. Using PLAPACK and MPICH-G2
to Grid-Enable Bayesian Geostatistical Models, 2006
http://www.teragrid.org/library/TG06_WHe-etal_present.ppt

