
Brief Introduction to OpenMP

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

October 11, 2007

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 1 / 22

Background

OpenMP is a framework for shared memory parallel computing.

OpenMP is a standard C/C++ and Fortran compilers.

Compiler directives indicate where parallelism should be used.

C/C++ use #pragma directives
Fortran uses structured comments.

A library provides support routines.

Based on the fork/join model:

the program starts as a single thread
at designated parallel regions a pool of threads is formed
the threads execute in parallel across the region
at the end of the region the threads wait for all of the team to arrive
the master thread the continues until the next parallel region.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 2 / 22

Brief Introduction to OpenMP

Some advantages:

Usually can arrange so the same code can run sequentially.
Can add parallelism incrementally.
Compiler can optimize.

The OpenMP standard specifies support for C/C++ and Fortran.

Many compilers now support OpenMP, for example

newer versions of gcc and gfortran
Intel compilers icc and ifort

The OpenMP runtime creates and manages separate threads.

OpenMP is much easier to use than low level thread libraries.

You still have to make sure what you are doing is thread-safe.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 3 / 22

A Simple Example

A very simple parallel C program:

#include <stdio.h>

#include <omp.h>

main() {

#pragma omp parallel

printf("Greetings!\n");

}

The same program in Fortran:

program ompgreetings0

!$omp parallel

print *,"Greetings!"

!$omp end parallel

stop

end

Fortran (usually) requires end parallel directives.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 4 / 22

A Simple Example

Compile with

gcc4 -o ompgreetings0 -fopenmp ompgreetings0.c -lgomp

or with

gfortran -o ompgreetings0 -fopenmp ompgreetings0.f90 -lgomp

A sample run:

[luke@node00 ~]$./ompgreetings0

Greetings!

Greetings!

Greetings!

Greetings!

Greetings!

Greetings!

Greetings!

Greetings!

[luke@node00 ~]$

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 5 / 22

A Simple Example

The default number of OMP threads on beowulf is currently set to
the number of available cores.

You can change this with the environment variable OMP NUM THREADS:
[luke@node00 ~]$ env OMP_NUM_THREADS=3 ./ompgreetings0

Greetings!

Greetings!

Greetings!

[luke@node00 ~]$

You can also change in in the OMP directive in the program:
#pragma omp parallel num_threads(3)

The number of threads can also be an integer variable.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 6 / 22

Some OMP Library Functions

The OMP library provides a number of useful routines.

Some of the most commonly used:

omp get thread num: current thread index (0, 1, . . .)
omp get num threads: size of the active team
omp get max threads: maximum number of threads
omp get num procs: number of processors available
omp get wtime: elapsed wall clock time from “some time in the past.”
omp get wtick: timer resolution

A variant of the greeting example using omp get thread num:
#pragma omp parallel

{

int n = omp_get_thread_num();

printf("Greetings from thread %d!\n", n);

}

printf("Greetings from the main thread!\n");

The complete example is in ompgreetings.c.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 7 / 22

http://www.stat.uiowa.edu/~luke/classes/295-hpc/examples/ompgreetings.c

Parallel Loops in OpenMP

OpenMP provides directives to support parallel loops.

The full version:
#pragma omp parallel

#pragma omp for

for (i = 0; i < n; i++)

...

Abbreviated versions:
#pragma omp parallel for

for (i = start; i < end; i++)

...

There are some restrictions on the loop, including:
The loop has to be of this simple form with

start and end computable before the loop
a simple comparison test
a simple increment or decrement expression

exits with break, goto, or return are not allowed.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 8 / 22

Shared and Private Variables

Variables declared before a parallel block can be shared or private.

Shared variables are shared among all threads.

Private variables vary independently within threads

On entry, values of private variables are undefined.
On exit, values of private variables are undefined.

By default,

all variables declared outside a parallel block are shared
except the loop index variable, which is private

Variables declared in a parallel block are always private

Variables can be explicitly declared shared or private.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 9 / 22

Shared and Private Variables

A simple example:
#pragma omp parallel for

for (i = 0; i < n; i++)

x[i] = x[i] + y[i];

Here x, y, and n are shared and i is private in the parallel loop.

We can make the attributes explicit with
#pragma omp parallel for shared(x, y, n) private(i)

for (i = 0; i < n; i++)

x[i] = x[i] + y[i];

or
#pragma omp parallel for default(shared) private(i)

for (i = 0; i < n; i++)

x[i] = x[i] + y[i];

The value of i is undefined after the loop.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 10 / 22

Simple Parallel Matrix Multiply

C version is in matmult.c
Fortran version is in matmult.f90
Uses parallel loop directives:

In C,
#pragma omp parallel for default(shared) private(i, j, n)

for (j = 0; j < NY; j++)

for (n = 0; n < NM; n++)

for (i = 0; i < NX; i++)

M(i, j) = M(i, j) + A(i, n) * B(i, j);

In Fortran,
!$omp parallel do default(shared) private(i, j, n)

do j=1,ny

do n=1,nm

do i=1,nx

m(i,j) = m(i,j) + a(i,n)*b(n,j)

end do

end do

end do

!$omp end parallel

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 11 / 22

http://www.stat.uiowa.edu/~luke/classes/295-hpc/examples/matmult.c
http://www.stat.uiowa.edu/~luke/classes/295-hpc/examples/matmult.f90

Critical Sections and Reduction Variables

Suppose we want to parallelize
int sum = 0;

for (i = 0; i < n; i++) {

int val = f(i);

sum = sum + val;

}

A first attempt:
int sum = 0;

#pragma omp parallel for

for (i = 0; i < n; i++) {

int val = f(i);

sum = sum + val;

}

Problem: there is a race condition in the updating of sum.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 12 / 22

Critical Sections and Reduction Variables

One solution is to use a critical section:
int sum = 0;

#pragma omp parallel for

for (i = 0; i < n; i++) {

int val = f(i);

#pragma omp critical

sum = sum + val;

}

Only one thread at a time is allowed into a critical section.

An alternative is to use a reduction variable:
int sum = 0;

#pragma omp parallel for reduction(+:sum)

for (i = 0; i < n; i++) {

int val = f(i);

sum = sum + val;

}

Reduction variables are in between private and shared variables.

Other supported reduction operators include *, &&, and ||.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 13 / 22

Some Additional Clauses

firstprivate, lastprivate declare variables private.

firstprivate variables are initialized to their value before the
parallel section.

For lastprivate variables the value of the variable after the loop is
the value after the logically last iteration.

Variables can be listed both as firstprivate and lastprivate.

The if clause can be used to enable parallelization conditionally.

num threads(P) says to use P threads.

schedule(static, n) divides the loop into chunks of size n
assigned cyclically to the threads.

schedule(dynamic, n) divides the loop into chunks of size n
assigned cyclically to the next available thread.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 14 / 22

Parallelizing Vectorized Operations in R

Code to evaluate a single argument function f:
#pragma omp parallel for if (P > 1) num_threads(P) \

default(shared) private(i) reduction(||:nflag)

for (i = 0; i < n; i++) {

int ia = i;

double ai = a[ia];

if (ISNA (ai)) y[i] = NA_REAL;

else if (ISNAN(ai)) y[i] = R_NaN;

else {

y[i] = f(ai);

if (ISNAN(y[i])) naflag = 1;

}

}

An alternative that may be useful for load balancing:

chunk = ...

#pragma omp parallel for if (chunk < n) schedule(dynamic, chunk) \

default(shared) private(i) reduction(||:nflag)

More experimentation is needed.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 15 / 22

Parallelizing Vectorized Operations in R

CPU times and speedup for dnorm:

0 10000 20000 30000 40000 50000

0
1

2
3

4
5

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

CPU time for dnorm

100 200 500 1000 2000 5000 10000 50000

0
1

2
3

4
5

n

S
pe

ed
up

P=2
P=4
P=8

Speedup for dnorm

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 16 / 22

Parallelizing Vectorized Operations in R

CPU times and speedup for qbeta:

0 200 400 600 800 1000

0
1

2
3

4

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

CPU time for qbeta

2 5 10 20 50 100 200 500 1000

0
1

2
3

4
5

6

n

S
pe

ed
up

P=2
P=4
P=8

Speedup for qbeta

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 17 / 22

Parallelizing Vectorized Operations in R

CPU times and speedup for qtukey:

0 200 400 600 800 1000

0
20

40
60

80

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

CPU time for qtukey

2 5 10 20 50 100 200 500 1000

0
2

4
6

8

n

S
pe

ed
up

P=2
P=4
P=8

Speedup for qtukey

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 18 / 22

Parallelizing Vectorized Operations in R

Machine used for these results:

Macintosh running OS X 10.4
Intel processors running i386 code.
Two quad-core processors.

All of these may affect performance.

For slow functions like qtukey parallelism pays immediately.

For fast functions like dnorm overhead matters:

starting and stopping the threads
fetching and storing the data

Choosing the right threshold for going parallel is important.

Figuring out how to determine the thresholds effectively is hard.

Load balancing may also be useful.

An experimental package will hopefully be available in a month or so.

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 19 / 22

Intel Compilers and Automatic Parallelization

Can the compiler insert OpenMP directives for you?

Some compilers can; this is one form of automatic parallelization.

They have to be conservative.
Programs spread over several files create difficulties.

The Intel compilers have some support for automatic parallelization.

Compilers are icc and ifort.

Option -openmp enables OpenMP processing.

Option -parallel enables automatic parallelization.

Option -par-report3 is useful to see what it does.

Automatic parallelization is easier/works better in Fortran.

Example commands for automatic parallelization:
ifort -O3 -parallel -par-report3 matmult.f90 -o matmult_f

icc -O3 -parallel -par-report3 -openmp matmult.c -o matmult_c

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 20 / 22

Automatic Parallelization of C Code

procedure: main

serial loop: line 21: not a parallel candidate due to insufficent work

serial loop: line 27: not a parallel candidate due to insufficent work

serial loop: line 34: not a parallel candidate due to insufficent work

serial loop: line 33: not a parallel candidate due to insufficent work

serial loop: line 43: not a parallel candidate due to insufficent work

serial loop: line 20

output data dependence assumed from line 22 to line 22, due to "a"

serial loop: line 26

output data dependence assumed from line 28 to line 28, due to "b"

serial loop: line 41

anti data dependence assumed from line 44 to line 44, due to "m"

output data dependence assumed from line 44 to line 44, due to "m"

flow data dependence assumed from line 44 to line 44, due to "m"

serial loop: line 42

anti data dependence assumed from line 44 to line 44, due to "m"

output data dependence assumed from line 44 to line 44, due to "m"

flow data dependence assumed from line 44 to line 44, due to "m"

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 21 / 22

Automatic Parallelization of Fortran Code

procedure: matmul_omp

serial loop: line 18: not a parallel candidate due to insufficent work

...

serial loop: line 42: not a parallel candidate due to insufficent work

matmult.f90(17) : (col. 4) remark: LOOP WAS AUTO-PARALLELIZED.

parallel loop: line 17

shared : { "a" }

private : { "n" "i" }

first priv.: { }

reductions : { }

matmult.f90(24) : (col. 4) remark: LOOP WAS AUTO-PARALLELIZED.

parallel loop: line 24

...

matmult.f90(40) : (col. 4) remark: LOOP WAS AUTO-PARALLELIZED.

parallel loop: line 40

shared : { "a" "b" "m" }

private : { "n" "i" "j" }

first priv.: { }

reductions : { }

Luke Tierney (U. of Iowa) Brief Introduction to OpenMP October 11, 2007 22 / 22

	Brief Introduction to OpenMP
	Background
	A Simple Example
	Some OpenMP Library Functions
	Parallel Loops in OpenMP
	Shared and Private Variables
	Critical Sections and Reduction Variables
	Critical Sections and Reduction Variables
	Some Additional Clauses
	Parallelizing Vectorized Operations in R
	Automatic Parallelization

