
Using MPI (MPICH) in C programs on our cluster

Kate Cowles

22S:295 High Performance Computing Seminar, Oct. 4, 2007

() 1 / 20

Outline

1 Introduction: MPI and MPICH

2 Basic MPI ideas

3 Examples of point-to-point communications

4 Collective communications

5 Resources for further study

() 2 / 20

Introduction: MPI and MPICH

MPI

“Message Passing Interface”
not a language but a standard for libraries of functions to enable
parallelization of code written in C, C++, or Fortran
several implementations, including MPICH and LAM
All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs.
The number of tasks dedicated to run a parallel program is static.
New tasks can not be dynamically spawned during run time.
(MPI-2 addresses this issue).

() 3 / 20

Introduction: MPI and MPICH

MPICH

compatible with parallel linear algebra library PlaPACK
doesn’t work with xmpi
MPICH does not include new features in MPI-2 standard

() 4 / 20

Introduction: MPI and MPICH

MPICH on our cluster

lines in my .cshrc file that make MPICH my default instead of LAM
setenv MPIRUN_HOME /opt/mpich/ch-p4/bin
set path = (/opt/mpich/chp4/bin $PATH)

() 5 / 20

Introduction: MPI and MPICH

Compiling and running C programs for MPICH

compiling
mpicc <progname>.c -o <execname>

example
mpicc greetingsm.c -o greetingsm

running it
mpirun -np <# processes> -machinefile
<machinefilename> <execname>

example
mpirun -np 12 -machinefile kc_machines greetingsm

() 6 / 20

Introduction: MPI and MPICH

Machine file

specfies nodes you want to use
default MPICH machine file in /opt/mpich/shared lists only
localhost

contents of example machine file for testing
node11
node12
node13
node14
node15

() 7 / 20

Basic MPI ideas

MPI naming conventions

MPI identifiers begin with MPI_

rest of function name is upper and lower: MPI_Init,
MPI_Comm_size

rest of constant name is all upper case: MPI_COMM_WORLD,
MPI_SUCCESS

() 8 / 20

Basic MPI ideas

Communicators

communicator: a group of processes that can send messages to
each other
MPI_COMM_WORLD: communicator predefined by MPI

consists of all the processes running when program execution
begins (i.e. as many as requested with -np option on mpirun)

rank or process id: integer identifier assigned by the system to
each process within a communicator when the process initializes

consecutive and begin at zero
used by programmer to direct different processes to do different
things in single-program, multiple-data approach

Note: discussion of ping.c goes here.

() 9 / 20

Basic MPI ideas

Communication

point-to-point communication: one process sends message to one
other process
collective communication: one-to-many; many-to-one;
many-to-many
blocking versus non-blocking communication

() 10 / 20

Basic MPI ideas

Buffering

system buffer space
not all MPI implementations use it
holds data in transit (e.g. if one process sends message and
receiver isn’t ready to receive it)
managed entirely by MPI

applications buffer: program variables managed by user
user-managed send buffer to set up messages for sending

Note: discussion of greetingsm.c goes here.

() 11 / 20

Basic MPI ideas

Blocking and non-blocking communication

blocking sends and receives
blocking send routine “returns” only when it is safe to modify the
application buffer (your send data) for reuse.
blocking receive “returns” only after the data has arrived and is
ready for use by the program.

non-blocking sends and receives
Non-blocking send and receive routines return almost immediately;
do not wait to verify that any communication events have
completed.

() 12 / 20

Examples of point-to-point communications

MPI_Send and MPI_Recv: Blocking send and receive

Arguments
Buffer
Program (application) address space that references the data that
is to be sent or received. In most cases, this is simply the variable
name that is be sent/received. For C programs, this argument is
passed by reference and usually must be prepended with an
ampersand: &var1
Data Count
Indicates the number of data elements of a particular type to be
sent.
Data Type
For reasons of portability, MPI predefines its elementary data
types.

() 13 / 20

Examples of point-to-point communications

Arguments continued

Destination
An argument to send routines that identifies receiving process by
rank.
Source
An argument to receive routines that identifies sending process by
rank; may be set to the wild card MPI_ANY_SOURCE.
Tag
Arbitrary non-negative integer assigned by the programmer to
uniquely identify a message. Send and receive operations should
match message tags.

() 14 / 20

Examples of point-to-point communications

Arguments continued
Communicator
Indicates the communication context (set of processes for which
the source or destination fields are valid); usually
MPI_COMM_WORLD
Status
For a receive operation, indicates the source of the message and
the tag of the message. In C, this argument is a pointer to a
predefined structure MPI_Status. The actual number of bytes
received is obtainable from Status via the MPI_Get_count routine.

() 15 / 20

Collective communications

Collective communcations

must involve all processes in the scope of a communicator
types

synchronization – processes wait until all members of the group
have reached the synchronization point.
data Movement - broadcast, scatter/gather, all to all.
collective Computation (reductions) - one member of the group
collects data from the other members and performs an operation
(min, max, add, multiply, etc.) on that data.

() 16 / 20

Collective communications

Scatter

Note: discussion of scatterrows.c goes here.

() 17 / 20

Collective communications

Broadcast

() 18 / 20

Collective communications

Reduce

Note: discussion of reduce.c goes here.

() 19 / 20

Resources for further study

Resources for further study

These are examples only.
Pacheco, P.S. Parallel Programming with MPI, 1997. Morgan
Kaufman.
http://www.cs.usfca.edu/mpi/

shorter version available online at
ftp://math.usfca.edu/pub/MPI/mpi.guide.ps

Lawrence Livermore National Laboratory MPI tutorial and
examples
http://www.llnl.gov/computing/tutorials/mpi/

() 20 / 20

http://www.cs.usfca.edu/mpi/
ftp://math.usfca.edu/pub/MPI/mpi.guide.ps
http://www.llnl.gov/computing/tutorials/mpi/

	Introduction: MPI and MPICH
	Basic MPI ideas
	Examples of point-to-point communications
	Collective communications
	Resources for further study

