Using MPI (MPICH) in C programs on our cluster

Kate Cowles

22S:295 High Performance Computing Seminar, Oct. 4, 2007

1/20

|
Outline

@ Introduction: MPI and MPICH

© Basic MPIideas

e Examples of point-to-point communications
e Collective communications

e Resources for further study

2/20

MP|

@ “Message Passing Interface”

@ not a language but a standard for libraries of functions to enable
parallelization of code written in C, C++, or Fortran

@ several implementations, including MPICH and LAM

@ All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs.

@ The number of tasks dedicated to run a parallel program is static.

New tasks can not be dynamically spawned during run time.
(MPI-2 addresses this issue).

3/20

MPICH

@ compatible with parallel linear algebra library PlaPACK
@ doesn’t work with xmpi
@ MPICH does not include new features in MPI-2 standard

4720

MPICH on our cluster

@ lines in my .cshrc file that make MPICH my default instead of LAM
setenv MPIRUN_HOME /opt/mpich/ch-p4/bin
set path = (/opt/mpich/chp4/bin S$PATH)

5/20

Compiling and running C programs for MPICH

@ compiling
mpicc <progname>.c -0 <execname>
e example
mpicc greetingsm.c -o greetingsm
@ running it
mpirun -np <# processes> -machinefile
<machinefilename> <execname>

e example
mpirun -np 12 -machinefile kc_machines greetingsm

6/20

Machine file

@ specfies nodes you want to use

@ default MPICH machine file in /opt /mpich/shared lists only
localhost

@ contents of example machine file for testing
nodell
nodel?2
nodel3
nodel4
nodelb

7120

MPI naming conventions

@ MPI identifiers begin with MPT__

@ rest of function name is upper and lower: MPI_Init,
MPI_Comm_size

@ rest of constant name is all upper case: MPT__COMM_WORLD,
MPI_SUCCESS

8/20

Communicators

@ communicator: a group of processes that can send messages to
each other
@ MPI_COMM_WORLD: communicator predefined by MPI
e consists of all the processes running when program execution
begins (i.e. as many as requested with —np option on mpirun)
@ rank or process id: integer identifier assigned by the system to
each process within a communicator when the process initializes

@ consecutive and begin at zero
e used by programmer to direct different processes to do different
things in single-program, multiple-data approach

Note: discussion of ping. c goes here.

9/20

Communication

@ point-to-point communication: one process sends message to one
other process

@ collective communication: one-to-many; many-to-one;
many-to-many

@ blocking versus non-blocking communication

10/20

Buffering

@ system buffer space

e not all MPIl implementations use it

@ holds data in transit (e.g. if one process sends message and
receiver isn’t ready to receive it)

e managed entirely by MPI

@ applications buffer: program variables managed by user
e user-managed send buffer to set up messages for sending

Note: discussion of greetingsm.c goes here.

11/20

Blocking and non-blocking communication

@ blocking sends and receives
e blocking send routine “returns” only when it is safe to modify the
application buffer (your send data) for reuse.
@ blocking receive “returns” only after the data has arrived and is
ready for use by the program.
@ non-blocking sends and receives

o Non-blocking send and receive routines return almost immediately;
do not wait to verify that any communication events have
completed.

12/20

MPI_Send and MPI_Recv: Blocking send and receive

Arguments

@ Buffer
Program (application) address space that references the data that
is to be sent or received. In most cases, this is simply the variable
name that is be sent/received. For C programs, this argument is
passed by reference and usually must be prepended with an
ampersand: &var1i

@ Data Count
Indicates the number of data elements of a particular type to be
sent.

@ Data Type
For reasons of portability, MPI predefines its elementary data
types.

13/20

Examples of point-to-point communications

Arguments continued

@ Destination
An argument to send routines that identifies receiving process by
rank.

@ Source
An argument to receive routines that identifies sending process by
rank; may be set to the wild card MPI_ANY_SOURCE.

@ Tag
Arbitrary non-negative integer assigned by the programmer to
uniquely identify a message. Send and receive operations should
match message tags.

14/20

Examples of point-to-point communications

Arguments continued

@ Communicator
Indicates the communication context (set of processes for which
the source or destination fields are valid); usually
MPI_COMM_WORLD

@ Status
For a receive operation, indicates the source of the message and
the tag of the message. In C, this argument is a pointer to a
predefined structure MPI_Status. The actual number of bytes
received is obtainable from Status via the MP|_Get_count routine.

15/20

Collective communcations

@ must involve all processes in the scope of a communicator
@ types
@ synchronization — processes wait until all members of the group
have reached the synchronization point.
e data Movement - broadcast, scatter/gather, all to all.
o collective Computation (reductions) - one member of the group
collects data from the other members and performs an operation
(min, max, add, multiply, etc.) on that data.

16/20

Scatter

MPI_Scatter

Sends data from one task to all other tasksin a group
sendent = 1;
recvent = 1;
sre = 1; task 1 contains the message to be scattered
MPI_Scattelf(sendbuf, sendcnt, MPI_INT,
recvhuf, recvent, MPI_INT,
src, MPI_ COMM_WORLDY};

task 0 task 1 task 2 task 3

-+—— sendbuf (before)

Note: discussion of scatterrows.c goes here.

17/20

Broadcast

MPI_Bcast

Broadcasts a message to all other processes of thatgroup

count = 1;
source = 1; broadcast originates in task 1
MPI_Bcast{&msg, count, MP1_INT, source, MPI COMM_WORLD);

task 0 task 1 task 2 task 3
7 -+—— msg (before)
7 7 7 7 -=—— msg (after)

18/20

Reduce

MPI_Reduce

Perform and associate reduction operation across all
tasks in the group and place the result in one task

count = 1;
dest = 1; result will be placed in task 1

MPI_Reduce{sendbuf, recvbuf, count, MPI_INT, MPI_SUM,
dest, MPI_ COMM_WORLDY;

task 0 task 1 task 2 task 3
1 2 3 4 -—— sendbuf (before)
10 -«—— recvhuf fafter)

Note: discussion of reduce. c goes here.

19/20

Resources for further study

These are examples only.
@ Pacheco, P.S. Parallel Programming with MPI, 1997. Morgan
Kaufman.
http://www.cs.usfca.edu/mpi/
@ shorter version available online at
ftp://math.usfca.edu/pub/MPI/mpi.guide.ps
@ Lawrence Livermore National Laboratory MPI tutorial and

examples
http://www.llnl.gov/computing/tutorials/mpi/

20/20

http://www.cs.usfca.edu/mpi/
ftp://math.usfca.edu/pub/MPI/mpi.guide.ps
http://www.llnl.gov/computing/tutorials/mpi/

	Introduction: MPI and MPICH
	Basic MPI ideas
	Examples of point-to-point communications
	Collective communications
	Resources for further study

