Luke Tierney

Department of Statistics & Actuarial Science

University of lowa

November 8, 2007

L

fi

«O> «F>» «=Z)r» «=)>» = Q>

Background i

@ Google, Yahoo, etc. deal with

e very large amounts of data (many terabytes)
e need to process data fairly quickly (within a day, e.g.)
e use very large numbers of commodity machines (thousands)

< o - —
- .

A cluster at Yahoo.

@ Google developed an infrastructure consisting of

e the Google distributed file system GFS
e the MapReduce computational model

@ Other implementations include Hadoop from Apache.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 2 /16

Requirements and Constraints

Want to run on 1,000-10,000 nodes.
With that many nodes

e some will fail
e some will go down for maintenance

Fault tolerance is essential.

Want to work on petabytes of data

Data will need to be distributed across many disks.

Data access speeds will depend on location:

o local disk will be fastest
e same rack may be faster than different rack

Replication is needed for performance and fault tolerance.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007

3/16

Requirements and Constraints i

@ Want an infrastructure that takes care of management tasks

e distribution of data
e management of fault tolerance
e collecting results

@ For a specific problem

e user writes a few routines
e routines plug into the general interface

@ Goal: identify a class of computations that is

e general enough to cover many problems
e structured enough to allow development of an infrastructure
e reasonably easy to tailor to specific problems

@ MapReduce seems to fit this goal reasonably well.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 4 /16

Google MapReduce i

Related to two concepts from functional programming:
e Mapping: applying a function to each element of a structure and
returning a comparable structure of results. R/S use the term apply.
e Reducing or folding: Applying a binary operation, usually associative,
often commutative, to an initial element and every successive element
of a structure to produce a single reduced result, e.g. a sum.

R 2.6.0 has recently introduced some functional programming
primitives, including Map and Reduce.

The names come from the Lisp world.

A useful running example: Counting word frequencies in a collection
of documents.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 5/ 16

Google MapReduce i

e MapReduce operations work with key/value pairs, e.g.

e document name/document content
e word/count

@ A general MapReduce computation has several components:
e Input reader: reads input files and divides into chunks for the map

function

e map function: receives key/value pair and emits 0 or more key value
pairs.

e Partition function: allocates output of maps to particular reduce
functions.

e Comparison function: used in sorting map output by keys.

e reduce function: takes a key and a collection of values and produces a
key/value pair.

e Output writer: writes results to storage.

@ All components can be customized.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 6 /16

Google MapReduce i

@ Often only map and reduce need to be written.

@ For simple word counting, map might look like
map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

The key is ignored.

@ The reduce function might look like

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit (AsString(result));

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 7 /16

Google MapReduce i

Google's MapReduce is implemented as a C++ library.
Operates on commodity hardware and standard networking.
Input data, intermediate results, and final results are stored in GFS.

A master scheduler process distributes map, reduce tasks to workers.
Fault tolerance:

e The master pings workers periodically.

e Workers that do not respond are marked as failed.
e Jobs assigned to failed workers are rerun.

e Master failure aborts the computation.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 8 /16

Apache Hadoop i

@ Hadoop is part of the Apache Lucene project for open-source search
software.

@ Hadoop is used heavily by Yahoo, among others.

@ There is support for running Hadoop jobs on Amazon EC2/Amazon

S3.

@ Hadoop includes
e a distributed file system, HDFS.
e a MapReduce framework.
e a web monitoring interface.
@ Hadoop is written in Java and can be extended in Java.
@ A mechanism for extension via C/C++ is also available.
@ A streaming interface using standard 1/O can also be used.
@ The streaming interface is the easiest way to use Python or R.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 9 /16

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=873&categoryID=112
http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://aws.amazon.com/s3

Apache Hadoop i

Word Count Example

A Python example from the Wiki is easily adapted to R.

| set up a simple test framework on my workstation.

Eventually we may wish to add this to beowulf.

The streaming interface uses batches of lines from text files as inputs.

It requires mapper and reducer executables or scripts.

The mapper produces lines of the form key<tab>value for the
reducer.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 10 / 16

Apache Hadoop i

Word Count Example

R script mapper.R to read lines from standard input and print
word<tab>1

for each word to standard output:

#! /usr/bin/env Rscript

trimWhiteSpace <- function(line) gsub(" (™ +)|(+$)", "", line)
splitIntoWords <- function(line) unlist(strsplit(line, "[[:space:]1]+"))

con <- file("stdin", open = "r")

while (length(line <- readLines(con, n = 1, warn = FALSE)) > 0) {
line <- trimWhiteSpace(line)
words <- splitIntoWords(line)
cat (paste(words, "\ti\n", sep=""), sep="")

}

close(con)

R script reducerer.R to read word/count pairs and emit word/sum pairs
is a little longer.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 11 /16

Apache Hadoop i

Word Count Example

Data are files from project Gutenberg.

Steps to running the example:
Start up hadoop.

Copy data to HDFS.

Run MapReduce.

Copy results back from HDFS.
Shut down hadoop

Starting upcodehadoop:
setenv HADOOP_INSTALL /home/luke/hadoop/hadoop
$HADOOP_INSTALL/bin/start-all.sh

Copying data to HDFS:
$HADOOP_INSTALL/bin/hadoop dfs -copyFromLocal gutenberg gutenberg

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 12 / 16

@ Running the MapReduce:
$HADOOP_INSTALL/bin/hadoop jar \
$HADOOP_INSTALL/contrib/hadoop-streaming. jar \
-mapper /home/luke/hadoop/mapper.R \
-reducer /home/luke/hadoop/reducer.R \
-input ’gutenberg/*’ -output gutenberg-output
@ Looking at the results:
$HADOOP_INSTALL/bin/hadoop dfs -cat \
gutenberg-output/part-00000 | more

Abaft 1

abandon 7
abandoned 7
abandoned, 2

«O» «Fr «=)r» « =

= = DAl

@ With minor modifications we can count the number of movies
reviewed by each customer in the Netflix data.

@ It is useful to change the movie files from

to

17767 :

1428688, 3,2005-08-09
656399, 3,2005-08-19

1356914,4,2005-05-27
1526449,4,2005-10-20

17767,1428688,3,2005-08-09
17767,656399,3,2005-08-19

17767,1356914,4,2005-05-27
17767,1526449,4,2005-10-20

«O» «Fr «

@ The mapper script nmapper.R is
#! /usr/bin/env Rscript

con <- file("stdin", open = "r")

while (length(line <- readLines(con, n = 1, warn = FALSE)) > 0) {
vals <- unlist(strsplit(line, ","))

cat(vals[2], "\t", 1, "\n", sep="")
}

close(con)
@ The reducer remains the same.
@ The results for 3 movie files:

$HADOOP_INSTALL/bin/hadoop dfs -cat netflix-output/part-00000 | more
1001833 1

1001928 2

1664010 3

1664458 1

«O>» «Fr «=>» «E=)» = Q>

Discussion fi

Many statistical computations can be expressed via MapReduce:
e simple summaries
o least squares regression
e k-means clustering
o logistic regression (needs a sequence of MapReduce operations)

Languages for managing MapReduce computations are in
development:

e Apache PIG project
e Google Sawzall

@ Some extensions are also under consideration
e map-reduce-merge

@ A number of frameworks supporting MapReduce are in development.

Luke Tierney (U. of lowa) The MapReduce Framework November 8, 2007 16 / 16

	The MapReduce Framework
	Background
	Requirements and Constraints
	Google MapReduce
	Apache Hadoop
	Discussion

