A Brief Introduction to Parallel Computing*

Marcin Paprzyckif Przemystaw Stpiczyriskit
August 2, 2006

Abstract

In this chapter a concise overview of the fundamentals of parallel
computing is presented. It is intended for readers who are familiar with
the general aspects of computing but are new to high performance and
parallel computing. This chapter provides a general overview of the
field and a requisite background for the issues considered in subsequent

chapters.

Contents
1 Introduction 1
2 Why parallel computing ? 2
3 Architectures 3
3.1 Inside of a processor 4
3.2 Memory hierarchieso 6
3.3 Flynn’s Taxonomy 7
3.4 SIMD computers 7
3.5 MIMD computers 8
3.5.1 Shared memory computers 9
3.5.2 Distributed memory computers 10
3.6 Architecture convergence 10
3.7 Clusterso 10
38 The Grid 11

*The first chapter of the book Parallel Computing and Statistics.

fComputer Science Department, Oklahoma State University, Tulsa, OK 74106, USA,
e-mail: marcin@cs.okstate.edu

iDepartment of Computer Science, Marie Curie-Sklodowska University, Lublin, Poland,
e-mail: przem@hektor.umcs.lublin.pl

4 Levels of parallelization 12

4.1 Inside of a single processor 12
4.2 Shared memory parallelism 13
4.3 Distributed memory parallelism 14
4.4 Grid parallelization oo 15

5 Theoretical models for performance analysis 16
5.1 Basic raw performance 16
5.2 Hockney’s and Jesshope’s model for vector processing 17
53 Amdahl'slaw 18

6 Programming parallel computers 23
6.1 Optimizing compilers 24
6.2 Language based parallelization 26
6.3 Shared memory parallel algorithms and OpenMP 27
6.4 Distributed memory parallelization 29
641 PVMand MPI 30

6.5 Shared-distributed memory environments 33
6.6 Parallelization of existing codes 34
6.7 Library-based parallelization 36
6.7.1 BLAS and LAPACK 36

6.7.2 BLACS, PBLAS and ScaLAPACK 41

7 Concluding Remarks 44

1 Introduction

Over the past twenty years, parallel computing has emerged from the en-
claves of research institutions and cutting edge technology firms and entered
the mainstream. While multi-processor machines were once a marvel of tech-
nology, today most personal computers arrive prebuilt with multiple process-
ing units (i.e. main processor/CPU, video processor, sound processor, etc.),
with computational power and memory substantially larger than those of
the top of the line, high-performance workstations of just a few years ago.
More importantly, the increased availability of inexpensive components has
made “desktop” systems with two and four processors available for the price
ranging from $5,000 to $15,000, while the proliferation of eight and sixteen
processor systems has been delayed only by the recent economic downturn.

In this chapter, a concise overview of the fundamentals of parallel com-
puting is presented. It is intended for readers who are familiar with the
general aspects of computing but are new to high performance and parallel
computing and provides a general overview of the field and a background for
the issues considered in following chapters. Specialists in high performance
and/or parallel computing may wish to skip directly to the subsequent ma-
terial.

2 Why parallel computing 7

Why parallel computing? The answer is simple: because there exists a need
to solve large problems — the kinds that often arise, among others, in the
application of statistical methods to large data sets.

While the ongoing applicability of Moore’s Law promises uninterrupted
increase in (single) processor “power,” the size of the problems that re-
searchers are interested in solving is increasing even faster. Parallel com-
puting becomes a viable bridge across this gap when it is possible to harness
multiple processors in a straightforward way, allowing non-specialists to take
advantage of available computational power. This does not imply that the
procedures involved are trivial (if this were the case, volumes like the present
one would not be needed), but merely that the economics of computing is
relatively simple. If by combining four processors it is possible to cut the
execution time of a large program by half, this is most likely worth the effort.
Of interest also is the trend in the overall growth of the world’s most power-
ful computers, which follow the pattern described by Moore’s Law (doubling
approximately every 18 months) [35]. Accordingly, the size of problems that
can be feasibly solved also nearly doubles every 18 months. However, to be
able to efficiently solve problems on machines with hundreds and thousands
of processors, knowledge must be accumulated and experience built across
the spectrum of available architectures.

Large problems from many areas of scientific endeavors are often used to
illustrate the need for large-scale parallel computing. Some examples include
(this list is certainly not exhaustive, but rather is presented here to indicate
the breadth of the need for parallel computing):

e Earth environment prediction,
e nuclear weapons testing (the ASCI program),

e quantum chemistry,

e computational biology,

e data mining for large and very large datasets,
e astronomy and cosmology,

e cryptography,

e approximate algorithms for N"P-complete problems.

The first two problems on the list led to the creation of the two largest
supercomputers in the world, which achieve 35.86 and 7.72 TFlops (10 x
10'2 floating point operations per second), respectively. Unfortunately, their
performance still does not reach the level necessary to accomplish the original
scientific goals set forth by the researchers. For instance, the estimated
necessary sustained speed of computations for the ASCI program is of the
order of 10! floating point operations per second. Obviously, even with
the exponential growth of computational power promised by Moore’s Law,
a single processor will not be able to achieve this level of performance any
time soon (if ever); therefore combining multiple computational units is the
only possible solution.

In summary, parallel computing and the construction of large multi-
processor systems has come to the forefront because of the need to solve
large computationally intensive problems. While it is relatively easy to com-
bine a few (2-16) processors to work on a problem on a small scale (it is in
fact much easier and cheaper than to acquire a single processor that would
be as powerful on its own), multiprocessing is the only way to reach the
necessary performance on a large scale.

3 Architectures

In this section, some important issues in computer architectures are briefly
described (a more detailed treatment of hardware issues can be found in
Chapter ??). For the purposes of this book, parallel computing is not con-
sidered a goal in its own right but rather a means of solving large compu-
tationally intensive problems. This being the case, performance needs to
be considered on all “levels” of a multiprocessor system, to assure that its
overall efficiency is optimal. Starting from the processor itself, the following
issues need to be addressed in order to indicate how its performance can be
maximized: (1) what is happening inside of a processor, (2) how can data
be efficiently supplied to fast processors.

3.1 Inside of a processor

One of the important features that drive the performance of modern pro-
cessors is pipelining, whose origins can be traced back to the CDC 6600
computer, in which it was for the first time successfully applied in a com-
mercial processor. Pipelining is based on a very simple observation: in a
classical von Neumann architecture, processors complete consecutive opera-
tions in a fetch-execute cycle, e.g. each instruction is fetched, decoded, the
necessary data is fetched, the instruction is executed, the results are stored
and only then is the processing of the next instruction initiated. This means
that a single instruction is executed in five steps and, after the start-up pe-
riod, each instruction is completed every cycle (see Figure 1). Assuming
that there is no direct dependency between consecutive instructions, while
one instruction is being decoded, another may be fetched. So, when the
data for the first instruction is fetched (third step), yet another instruction
is introduced. In this way, after a start-up period of 5 cycles, the pipeline
fills in (5 instructions are in various stages of execution) and an instruction
is “completed” every step (instead of every 5 steps). In the case when there is
a direct dependency between consecutive operations, the compiler can often
rearrange the instructions in such a way as to keep these operations sepa-
rated in order to maintain independence and prevent the disruption of the
pipeline. Finally, when branch instructions are encountered, an educated
guess is made (and there exists a large body of research about how to make
a correct branch prediction) and “the most likely” of the available branches
is selected. In modern architectures, the success rate of branch prediction is
above 90%.

This general idea of pipelining has been further extended in the follow-
ing directions. First, it was observed that scientific computations very often
involve vectors and matrices. Accordingly, special pipelines have been de-
veloped for floating point vector operations (see Figure 1). In addition, the
multiplication of a vector by a constant is often followed by vector addi-
tion: operations of the type ax + y (where x and y are vectors). For this
class of operations, it is possible to further improve processor performance
by sending the results from the multiplication pipeline directly into the addi-
tion pipeline, without storing the intermediate results. This process is called
chaining. Second, operations on integers differ from operations on floating
point numbers in the amount of steps required for their completion. For
instance, when two integers are added, since both of them are objects be-
longing to the same range and represented as two strings of 32 bits, the only
operation to be performed is actual addition. In the case of floating point

Cycle
Stage 1 2 3 4 5 6
fetch operands A[1], B[1] |A[2], B[2] | A[3], B[3] | A[4], B[4] |A[5], B[5] | A[6], B[6]
adjust exponents A[1], B[1] | A[2], B[2] |A[3], B[3] | A[4], B[4] | A[5], B[5]
execute multiplication A[17*B[1] |A[2]*B[2] | A[3]*B[3] |A[4]*B[4]
normalize result A[1]*B[1] | A[2]*B[2] | A[3]*BI[3]
store result A[1]*B[1] | A[2]*B[2]

Figure 1: Partial representation of pipelined floating-point multiplication of
elements of a vector

addition, the two have to be assumed to belong to different ranges of avail-
able numbers and have to be aligned to be added. This involves operations
on both their mantissas and exponents. After the operation is completed,
the result needs to be “rescaled” to the desired final representation, which in-
volves further operations on the mantissa and the exponent of the result (see
Figure 1). This difference opens up the possibility of developing processors
with separate pipelines for integer and floating point operations. Finally,
since it is often possible to reorganize the instruction stream to sufficiently
separate dependent operations and since many operations on long vectors
can be divided into independent operations on sub-vectors (e.g. vector ad-
dition, vector scaling etc.), it is also possible to introduce multiple integer
and floating point pipelines. Currently, all modern processors — including
products from Intel and AMD — are built this way.

While the processors are constantly increasing their speed, an impor-
tant problem arises: how to provide them with data sufficiently fast. The
memory subsystem is typically either too slow to service the processor or
the implementation of a memory service that is fast enough is too expensive
to be economically feasible, which results in a bottleneck in the processing
capabilities of the computer. It becomes impossible to feed the ever-faster
processors with data at an appropriately fast rate. Attempts to minimize the
effects of this bottleneck have led to the development of hierarchical memory.

3.2 Memory hierarchies

There are two ways of addressing the limitations of the memory subsystem.
One way is to consider only the performance of the memory and to install

the fastest subsystem available at a time. To further increase its speed, the
memory can be divided into separately accessible and refreshable memory
“banks.” Given this setup, if the data is laid out and accessed in an optimal
way, each consecutive element is retrieved from a separate memory bank and
this memory bank is ready before the next access is requested. Unfortunately,
if consecutive elements are retrieved from the same memory bank, a memory
bank conflict occurs (the next element cannot be retrieved until the memory
bank is refreshed). This can result in the reduction of performance even by
a factor of seven [78, 80, 79, 42]. This approach to the memory bottleneck
problem was a staple of Cray Research and their architectures e.g. Cray Y-
MP, which while characterized by very high memory throughput, was chiefly
responsible for the prices of the order of $ 20 million (in 1990, with an
academic discount) for a complete system.

Extremely fast uniform-speed memory cannot be afforded in quantity
except by a few power users, e.g. very large companies, the government, its
military and their research laboratories, etc. Thus the need for an alterna-
tive approach — cache memory. Here, a relatively small, high-grade and fast
memory subsystem is inserted between the processor and the main memory,
which is of a lower grade but proportionally larger. Cache memory stores
both the instructions that are to be utilized by the processor and the data,
which is predicted to be used next. Since cache memory is faster than the
main memory, it can increase the data throughput (assuming that it contains
the correct data that is to be used in subsequent steps). Modern systems
typically have at least two levels of cache memory and the general rule that
characterizes such systems is: the further “away” from the processor, the
larger and slower the available memory and the longer it takes for the data
to reach the processor. There are downsides to this approach, of course.
Since each level of cache has a different speed for every level of cache in the
system, different data latencies are introduced. To utilize the hierarchical
memory system to its fullest extent, algorithms have to be oriented toward
data locality. First, groups of data elements that are to be worked on to-
gether should be moved up the memory hierarchy (closer to the processor)
together. Second, all necessary operations on these data elements should be
performed while they are stored in the closest cache to the processor and
the algorithm should not return to these elements in subsequent steps. For
example, in the context of numerical linear algebra, this is achieved through
the application of block-oriented algorithms based on the level 3 BLAS ker-
nels (see section 6.7.1 for more details) and careful selection of blocksizes
(utilizing, for instance, tools developed by the ATLAS project [99]).

3.3 Flynn’s Taxonomy

Now that some of the techniques used to optimize the performance of single
processor systems have been presented, a look at possible configurations for
multiple processors is in order (for more detailed treatment of these topics,
see Chapter ??7). The old but still useful general computer taxonomy intro-
duced by Flynn in 1966 [50] provides a good starting point. By considering
the fact that information processing, which takes place inside of a computer,
can be conceptualized in terms of interactions between data streams and
instructions streams, Flynn was able to classify computer architectures into
four types:

e SISD - single instruction stream/single data stream, which includes
most of the von Neumann type computers,

e MISD — multiple instruction streams/single data stream, which de-
scribes various special computers but no particular class of machines,

e SIMD - single instruction stream/multiple data streams, the architec-
ture of parallel processor “arrays,” and

e MIMD — multiple instruction streams/multiple data streams, which
includes most modern parallel computers.

The last two types of machines, SIMD and MIMD, are at the center of
interest in this book since most of the currently used parallel systems fall
into one of the two categories.

3.4 SIMD computers

SIMD-based computers are characterized by a relatively large number of
relatively weak processors, each associated with a relatively small memory.
These processors are combined into a matrix-like topology, hence the popu-
lar name of this category: “processor arrays”. This computational matrix is
connected to a controller unit (usually a top of the line workstation), where
program compilation and array processing management takes place (see Fig-
ure 2). For program execution, each processor performs operations on sepa-
rate data streams; all of the processors may perform the same operation, or
some of them may skip a given operation or a sequence of operations. In the
past, the primary vendors producing such machines were ICL, MasPar and
Thinking Machines. Currently, this class of machines is no longer produced
for the mainstream of parallel computing. One of the main advantages of

SIMD computers was the fact that the processors work synchronously, which
enables relatively easy program tracing and debugging. Unfortunately, this
advantage comes at a price. In experiments with actual SIMD computers,
users realized that it is relatively difficult to use them for unstructured prob-
lems and, in general, all problems that require a high level of flexibility of
data manipulation and data transfer between processing units. Currently,
most of these machines have disappeared from the market, although there are
researchers, who claim that SIMD machines are about to make a comeback
[87].

processor memory

elements /—\
7 PE] M]
control
processor
cp | PE, M,
| PE, M,
N

instruction stream

Figure 2: SIMD multiprocessor

3.5 MIMD computers

The class of MIMD-based parallel computers can be divided into two sub-
categories: shared memory and distributed memory systems. This division
is based on the way that the memory and the processors are connected (see
Figure 3).

3.5.1 Shared memory computers

Computers of this type consist of a number of processors that are connected
to the main (global) memory. The memory connection is facilitated by fast

cache] [cache] [cache

i 1 1 M My Mo

PE, PE, |- | PE

PE, PE, |- | PE

interconnection network

[global memory J

interconnection network

Figure 3: Shared and distributed memory multiprocessors

bus technology or a variety of switch types (e.g. omega, butterfly, etc.)
These machines were initially developed with practically memory-less pro-
cessors but were later equipped with cache memory, which resulted in rela-
tively complicated data management / cache coherency issues. Many com-
panies have produced shared memory computers over the years, including;:
BBN, Alliant, Sequent, Convex, Cray and SGI. While these systems were
relatively easy to program (with loop parallelization being the simplest and
the most efficient means of achieving parallelism), computational practice
exposed some important hardware limitations in their design. The most im-
portant of them is the fact that it always was and still is almost impossible
to scale shared memory architectures to more than 32 processors and to si-
multaneously avoid saturating the bandwidth between the processors and
the global memory. Nevertheless, one can observe a resurgence of shared
memory computers in the form of: multiprocessor desktops, which usually
contain two or four processors; midrange systems with four or eight proces-
sors, primarily used as servers; and high performance nodes for the top of the
line parallel computers, which usually contain 16, 32 or even 64 processors

10

(in the latter case special switching technology is applied).

3.5.2 Distributed memory computers

Since the early days of parallel computing, the second most popular architec-
ture, is distributed memory technology, supported over time among others
by: Intel, NCube, Inmos, Convex, Cray and IBM. In this configuration,
processing units are composed of a processor and a large local memory and
are interconnected through a structured network. There is no global mem-
ory. Typical topologies for these structured networks are meshes, toruses
and hypercubes. While code for distributed memory computers is relatively
more difficult to write and debug, the architecture can be scaled to a large
number of processors. Even some of the early distributed memory machines
successfully employed up to 1024 processors.

3.6 Architecture convergence

Over time the experiences of early adopters led to an evolution in the design
of parallel computers architectures, a process which became even more ac-
celerated with the end of the Cold War and the substantial drop in military
funding for high performance computing, which resulted in bankruptcies or
product line changes (moving away from producing parallel computer hard-
ware) for a number of parallel computer vendors (among others, Kendall
Square Research, Alliant, BBN and Thinking Machines). SIMD machines
have been all but eliminated, although many of their conceptual and techno-
logical advances have been incorporated into modern processor design (video
processors in particular). The development of shared memory machines had
almost become dormant, until the rebirth of the architecture in desktop PCs
and servers. Distributed memory architectures have been by far the most
successful. This success has been further substantiated in 1995, when NASA
scientists successfully completed the Beowulf project, which paved the way
toward cluster computing [4].

3.7 Clusters

While the largest computers in the world are still custom built for the high-
est performance, they cost tens of millions of dollars as well. Clusters made
high performance parallel computing available to those with much smaller
budgets. The idea is to combine commodity-off-the-shelf (COTS) compo-
nents to create a parallel computer. The Beowulf project was the forerunner
in this approach.

11

It is now possible to network 16 top of the line PCs using a fast switch
to form a parallel computer that is substantially more powerful than the
fastest machine in the world in 1990 for no more than $50,000 (a 400 fold
price decrease). What is even more interesting is the possibility of combining
higher-end shared memory PCs and servers into clusters. One can still use
the same 16-port switch but with each node having four processors, for exam-
ple, a resulting parallel computer has 64 processors. Notice however, that in
the computational practice, it is the connectivity between the cluster nodes
that is the weakest point of many clusters. Low throughput switches can
result in imbalanced systems and become a major performance bottleneck,
especially when more powerful nodes are used in the cluster. Regardless of
possible drawbacks and limitations, due to their excellent price-performance
ratio, clusters have been successfully applied in the industry to solve practical
problems (see for instance [64]).

It is important to stress here that clusters are not a different architec-
tural category of parallel computers in Flynn’s taxonomy; they are merely a
practical way of building efficient low cost distributed memory MIMD com-
puters.

3.8 The Grid

The most recent developments in parallel computing have been in the area
of grid computing. The idea is based on the metaphor of the electric power
grid. If one plugs-in an appliance to the electric grid, one does not care
about where the electricity comes from (as long as it is available). In the
same fashion, one could plug a computer into the computer grid, request
that a computational task be completed, and not have to care about where
the actual computation takes place [51]. It can be said that the first suc-
cessful grid-like computing endeavor was the SETI@home research project,
in which the computers of more than 4,400,000 users work “together” in
sifting through data acquired by the Arecibo radio telescope, searching for
extraterrestrials. At the time of this writing, the SETI@home network of
machines delivered approximately 54.7 - 10'2 floating point operations per
second. Most of this power is gained by utilizing the unused otherwise
cycles on users’ computers. In the same way, computers connected to a
grid will be able to combine their computational power / unused cycles to
serve their customers. While a very large amount of research still remains to
be completed before the GRID becomes a reality outside special academic
and industrial projects, this is one of the most interesting and most fash-
ionable areas in parallel computing today. This latter fact is signified by a

12

flurry of publications devoted to grid computing that appear outside of the
realm of peer reviewed journals and conference proceedings (see for instance
[24, 25, 67, 72, 93]). As an interesting footnote illustrating the interest in
this approach, it can be noted that the PC maker Gateway tries to use its
in-store demo computers as a computational grid and plans on making profit
in this way to support company’s bottom line [88, 75].

Summarizing, most of modern computer architectures used to solve large
computationally intensive problems involve multiple levels of parallel com-
puting: from the processors with multiple integer and floating point pipelines
and special vector processing units through multiple processors combined
into shared memory computers followed by multiple processing units tightly
integrated into distributed memory parallel computers to multiple computers
(single processor and parallel) working together in a computational grid.

4 Levels of parallelization

It will be useful to consider as an example a modern parallel computer that
consists of a number of state of the art processors (vector, RISC, x86, TA-64,
etc.). These processors are combined into shared memory modules. The
machine consists of a number of such modules combined into distributed
memory parallel computer (possibly a cluster). The computer needs to be
examined from the “inside out” — what is happening inside a single processor,
what is happening inside a single module, and what is happening in the whole
machine. Finally, it will be assumed that a number of computers of this type
are combined together into a loosely-connected network. For the purposes
of this discussion, all issues related to memory banks, cache memory and
memory hierarchies are omitted. They have been addressed previously and
while they are crucial to the overall performance of the system they do not
affect the available parallelism directly.

4.1 Inside of a single processor

As mentioned above (Section 3.1), modern day desktop processors such as
those developed by Intel, AMD, IBM, etc., are already highly parallelized.
Such processors have multiple pipelines for integer and floating point oper-
ations [9], so two different levels of parallelization can be considered. First,
the depth of the pipeline: if a pipeline of depth k is used then k operations
can be executed at the same time. Second, number of pipelines: assuming
that there are [integer pipelines of depth k1 and m floating point pipelines

13

of depth ks in a given processor, and that all pipelines are operating at max-
imum capacity at a given moment, then % -1+ ko - m operations are executed
by the processor concurrently in every cycle.

Availability of this level of parallelism, which is often called micropar-
allelism, is a function of dependencies inside a stream of machine language
operations. These dependencies are analyzed and microparallelism is sup-
ported: by the logic unit inside of the processor on the hardware level and by
the compiler and compiler supplied optimization on the software level. Typ-
ically, the user does not have to and does not need to have any control over
microparallelization as it should be furnished automatically by the system.

4.2 Shared memory parallelism

While multiple operations are executed in parallel inside each processor at
every step of program execution, parallelism occurring at higher levels is of
real interest. In the case of an architecture, in which multiple processors
are connected to a global (logically and physically) shared memory, the typ-
tcal way of introducing parallelization is to perform similar operations on
subsets of data. The most natural algorithmic level of achieving such par-
allelization is by dividing between multiple processors work performed by a
loop. In particular, a given loop (simple or the outermost loop of a nested
loop structure) is divided into as many parts as there are processors (while
this is not required and a loop could be divided into a different number of
parts, assuming that the number of parts equals the number of processors,
is most natural and can be done without loss of generality). Subsequently,
each part is executed independently by a separate processor. This kind of
parallelization is often called medium-grain parallelization and is supported
either through a set of special directives (see section 6.3 below) or through
high-level language extensions (see chapter ?7).

A large body of research has been and continues to be devoted to develop-
ing compilers capable of automatically generating this level of parallelization.
Unfortunately, the results have been disappointing thus far. Parallelizing
compilers are relatively successful in generating parallel code with simple
loops, addition of two vectors, matrix multiplication, etc. However, in more
complicated cases, e.g. when functions are called inside of loops, the code
must still be manually divided into parallel units.

14

4.3 Distributed memory parallelism

The most typical approach to distributed memory parallelization is to cre-
ate independent programming units that will execute separate work units
(which may or may not be similar to each other), with these units com-
municating with each other via message passing. This latter functionality,
although necessary, is expensive (in terms of the time required for messages
to reach their destination and thus in terms of the latency introduced to the
system). Accordingly, minimizing the number of messages passed between
components becomes an important goal of program design. One must seek
to divide a distributed parallel program into large computational units that
are as independent from each other as possible and only rarely communi-
cate. While it is possible that each work unit is completely different from
others (e.g. some of them advance the solution of a differential equation,
others perform interpolation, while others still use the result of interpolation
to generate on-the-fly visualization of the solution), this is rarely the case.
Most often each work unit is a derivative of the main program and performs
the same subset of operations as the other work units but on separate data
sets. This type of an approach is called SPM D (single program, multiple
data) and often referred to as coarse level parallelization. Obviously, this
level of parallelization must be implemented manually by the programmer
as the division of work is based on a semantic analysis of the algorithm(s)
used to solve the problem (and possibly their interdependencies). One of
the more important problems for distributed memory parallelization is also
the question of load balancing. Since each computational unit is relatively
independent (which is especially the case when they perform completely dif-
ferent functions), it may require different time to complete its work. This
may, in turn, lead to a situation when all processors but one remain idle as
they wait for the last one to complete its job. (A theoretical model, which
analyzes and illustrates the negative effects of such a situation, can be found
in Section 5.3.) The last example illustrates the fact that while the work
units should be large and independent, they should also complete their tasks
within a similar time, which makes the SPMD approach somewhat more
attractive than the division of work into completely independent units.

It should be noted that although these are the principle methods of shared
and distributed memory parallelization, there are alternative ways as well.
The approaches described above try to make the software “match” the un-
derlying hardware. However, it is also possible to treat a shared memory
machine as a distributed memory computer and apply approaches based on
message passing. Although message passing does introduce certain overhead,

15

this approach often results in good performance if implemented efficiently
[83, 82]. The converse approach is to treat a distributed memory computer
as a shared memory system and rely on the mechanisms provided by the
vendor or third party software to emulate logically shared memory imple-
mented on physically distributed memory hardware. Unfortunately, such
an approach is impractical for real applications: not a single existing shared
memory emulator is efficient enough to support “virtual” shared memory in a
production environment. Finally, one needs to consider the hybrid hardware,
where shared memory nodes have been combined into a distributed memory
configuration, which results in a distributed shared memory computer. Here,
again, treating such a machine as a distributed memory computer and ap-
plying appropriate parallelization techniques is usually more successful than
treating it as a shared memory environment. Nevertheless, it is the combined
approach of distributed and shared memory techniques that can be expected
to be the most efficient in using the underlying architecture.

4.4 Grid parallelization

In grid computing, a number of computers (irrespective of their individual
architectures) are loosely connected via a network. In the most general case,
each machine (including the properties of connections between them) is as-
sumed to be different. This makes for an extremely heterogeneous system,
which requires the coarsest level of parallelization since the work must be
divided into independent units that can be completed on different comput-
ers at different speed and returned to the main solution coordinator at any
time and in any order, without compromising the integrity of the solution.
Although there are tasks that are naturally amenable to this level of par-
allelization, a broader applicability of this approach requires much further
research and infrastructure development. Examples of successfully tested
tasks include the analysis of very large sets of independent data blocks, in
which the problem lies in the total size of data to be analyzed (such as in
the SETIQHome project [48]).

In summary, there are multiple levels at which parallelization can occur.
The simplest microparallelization takes place inside a single processor and
usually does not require the intervention of the programmer to implement.
Medium-grain parallelization is associated with language supported and/or
loop level parallelization. While some headway has been made in automating
this level of parallelization with optimizing compilers, the results of these at-
tempts are only moderately satisfactory. Coarse-grain parallelization is asso-

16

ciated with distributed memory parallel computers and is almost exclusively
introduced by the programmer. Finally, grid-level parallelization is currently
the focus of intensive research and, while it is a very promising model for
solving large problems, its applicability in the foreseeable future will proba-
bly continue to be limited to certain classes of computational problems, viz.
those that belong to the “large scale embarrassingly parallel” category.

5 Theoretical models for performance analysis

After looking at the basic issues in the design of parallel systems, the the-
oretical analysis of parallel algorithms executed on these systems will be
considered. There are a number of models that can be employed to predict
the parallel usability of a given algorithm. While the approach advocated
here is not uncontroversial, it could be argued that, for a user in the context
of scientific computing, the most important criterion defining the usability of
a given approach is its execution time (the speed of execution of an algorithm
on a given machine). Obviously, this assumes that a particular algorithm,
after parallelization, has to correctly solve the problem (under appropriate
conditions of correctness).

Some further assumptions need to be made explicit. Since this book is
concerned with computational statistics, it can be assumed that floating-
point operations are the most important (time consuming) operations that
will be performed during algorithm execution. It can also be assumed that
data most often will be stored/represented as vectors and matrices. In this
context, a parallel algorithm can be characterized by a number of parameters
that influence its performance, e.g. size of vectors and matrices, data layout,
number of processors of the parallel computer, etc. Algorithm analysis with
a particular computational model in mind will allow initial optimization of
these parameters without requiring testing on a real machine or at least a
preliminary assessment of possible algorithm efficiency.

5.1 Basic raw performance

The processing speed of computers involved in scientific calculations is usu-
ally expressed in terms of a number of floating point operations completed
per second, a measure used above to describe the computational power of
the world’s largest supercomputers. For a long time, the basic measure was
Mflops expressed as:

N
r= Mflops, (1)

17

where N represents a number of floating point operations executed in ¢ mi-
croseconds. Obviously, when N floating point operations is executed with
an average speed of r Mflops, the execution time of a given algorithm can
be expressed as:

= (2)

Due to the geometric increase in available speeds of computer hardware,
the Mflop measure has been superseded by higher-order measures: Gflops
(gigaflops), Tflops (teraflops) and even Pflops (petaflops) = 10'° floating
point operations per second. The floating point operations rate can be used
to characterize an algorithm executing on a given machine independently
of the particular characteristics of the hardware, on which the algorithm is
executed, as well as to describe the hardware itself. Many vendors of par-
allel computers advertise a theoretical peak performance for their machines;
this is the maximum speed with which any algorithm can be potentially ex-
ecuted on their hardware. Of course, in computational practice (outside of
special simplified cases, such as matrix multiplication), this performance is
unattainable. At the same time, however, it indicates what performance can
potentially be expected from a given machine.

5.2 Hockney’s and Jesshope’s model for vector processing

Although this chapter is focused on parallel computers and their perfor-
mance, it is useful to start with a model for vector processors. While this
model is relatively dated, its applicability has recently been revived with
the development of the Earth Simulator, the largest supercomputer in the
world, which was built by the NEC Corporation on a foundation of propri-
etary vector processors. In addition, since most modern processors consist of
multiple pipelines, performance of each such pipeline can be also conceptu-
alized in terms of the vector performance model presented here. For vector
computers, the performance ry of a vector-processing loop of length N can
be expressed in terms of two parameters 7o, and ny/5, which are specific
for a given type of a loop and a vector computer [65]. The first parameter
represents the performance in MFlops for a very long loop, while the second
the loop length for which a performance of about r,/2 is achieved. Then

T
ry = ————— MFlops. 3

This model can be applied to predict the execution time of different loops.

18

For example, the vector update in the form
T — T+ oy

(i.e. the _AXPY operation) can be expressed as a loop of the length N in
which each repetition consists of two floating-point operations. Thus, the
execution time of _AXPY is

2N 2-107°
1057y T

Taxpy(N) (n1/2 + N) seconds. (4)

This model can be applied not only to predict the execution time of
vectorized programs but also to develop optimal vector algorithms [65, 92].
Indeed, several algorithms (especially divide and conquer algorithms) consist
of loops of different lengths, which are related to each other and can be
treated as parameters of a vectorized program. Then (3) can be used for
finding optimal values of these parameters that minimize the execution time
of a program. For instance, in [92|, the Hockney—Jesshope model of vector
processing was applied to find a very fast vector algorithm for solving linear
recurrence systems with constant coefficients.

5.3 Amdahl’s law

One of the most important methods of analyzing the potential for paral-
lelization of any algorithm is to observe how the algorithm can be divided
into parts that can be executed in parallel and into those that have to be
executed sequentially. More generally, different parts of an algorithm are
executed with different speeds and use different resources of a computer to
a different extent. It would be naive to predict the algorithm’s performance
by dividing the total number of operations by the average speed of the com-
puter. Such a calculation would be at best a very crude estimate for single
processor machines with a very simple memory hierarchy. To find a quality
performance estimate, one should separate all parts of the algorithm that
utilize the underlying computer hardware to a different extent. Significant
initial work in this area was done by Amdahl [39, 40]. He established how
slower parts of an algorithm influence its overall performance. Assuming
that a given program consists of N floating point operations, out of which a
fraction f is executed with a speed of V' MFlops, while the remaining part
of the algorithm is executed with a speed of S Mflops, and assuming fur-
ther that the speed V is close to the peak performance while the speed S
is substantially slower (V > §), then the total execution time can be then

19

expressed using the following formula:

=N - end 1) Q

which can be used to establish the total execution speed of the algorithm as

N 1
r=T T 1, ap Miors (6)
\% S
From formula (5), it follows that
(1-fN
t>———. 7
> 1 @

If the whole program is executed at the slower speed S, its execution time
can be expressed as

t= = (8)

If the execution speed of the part f of the program can be increased to
V then the performance gain can be represented as

t« N S5 1
t oS NI-f) 1-J ¥

This last formula is called Amdahl’s Law and can be interpreted as fol-
lows: The speed-up of an algorithm that results from increasing the speed of
its fraction f is inversely proportional to the size of the fraction that has to
be executed at the slower speed.

In practice, Amdahl’s Law provides an estimate of the overall speed at
which the algorithm can be executed. Figure 4 illustrates the effect of the
size of f, the fraction of calculation executed in vector speed, on the total
performance of an algorithm to be executed on a vector computer, where
V' = 1000 MFlops (peak performance using a vector unit) and with S = 50
MFlops (performance of scalar calculations).

It can be observed that a relatively large f = 0.8 results in an average
speed of only 200 MFlops. In computational practice, this result illustrates
an intuitive fact: to reach the highest possible level of performance of a given
program, the most important parts are those that are the slowest. Moreover,
even a relatively small fraction of a slow code can substantially reduce the
overall speed achieved by the whole program — see the rapid decrease of
the performance graph from f = 1.0 to f = 0.8. A typical example of
how the speed of the slowest parts of the program influences the overall

20

1000 T

800 7]

600 T

400]

200 7

0.6 0.8 1

Figure 4: Amdahl’s Law (performance in MFlops) for V' = 1000 and S = 50
(increasing fraction f)

performance of the vector computer would be a notorious case of recurrent
formulas (84, 91].

Formula (6) can be easily generalized to the case of a program consisting
of n separate parts (41,..., A,) that are executed at different speeds. Here,
N; operations of part A; are executed with speed r; MFlops, and N =
Z;’L:l Nj;. Thus the average speed of the whole program can be expressed as:

N
n Nj

j:1 T

r= Mflops, (10)

and again, the average performance will be determined primarily by the
speed of its slowest parts.

For a parallel program, the total execution time, understood as the sum
of execution times on all processors, is usually larger than the total time
used by the same algorithm executed on a single processor (not considering
special cases, where the effects of job splitting among multiple processors
with large memories affect the total performance by freeing the program
from the influence of memory related bottlenecks, which occur on a single
processor machine). However, as specified above, the main goal of parallel
computing is to reduce the humanly observable (wall-clock) execution time
of the algorithm. The increase of the total time is the price to be paid for

21

the reduction of the wall-clock time. If an algorithm can be divided into
p equal parts that can be executed concurrently on p processors then it is
conceivable that the parallel execution time will be 1/p of the single processor
time. Such a situation is practically impossible for all non-trivial algorithms.
Since the sequential parts of an algorithm are the “slowest,” Amdahl’s law
dictates that these parts have the most serious negative impact on the overall
performance.

More precisely, in the case of a parallel machine with p homogeneous
processors, the speedup s, over the sequential algorithm achieved due to p
processors can be expressed as:

sp = g. (11)
where ¢; denotes time of execution of the algorithm on j processors. Assum-
ing that fraction f of the algorithm can be divided into p parts and ideally
parallelized (executed at exactly the same time t;/p on p processors), the
remaining 1 — f of operations cannot be parallelized and thus have to be
executed on a single processor. The total execution time of this algorithm
on p processors can be expressed as:

(f+@ -1 p)
. .

t t
tpzfgw(l—f)tl: -

Therefore the speedup s, is equal to

p
Sp=—"—. (12)
P+ fp
Obviously, f < 1, and therefore the following inequality is true
1
< —. 13
Sp 1— f ()

This inequality (13) is known as Amdahl’s Law for parallel computing. It
states that the speedup achievable through parallel computing is bound by the
value that is inversely proportional to the fraction of the code that has to be
executed sequentially.

Similarly to the general Amdahl’s Law [39] the above considerations pro-
vide a simple way to initially assess the expected parallel performance of an
algorithm. If f = 0.9, so that 90% of an algorithm can be ideally paral-
lelized, and if p = 10, the formula (12) gives the result that the speedup
cannot exceed 5.

22

While the situation presented here is obviously highly idealized, it allows
to conceptualize the effects of load imbalance. In the case of a program
executing on two processors, where at a certain moment processor 1 has
completed its work while processor 2 is still executing its part of the parallel
code, the still-to-be-executed part of the code on processor 2 becomes a, serial
part of the parallel program and formula (12) applies. In general, in the case
of a parallel program executing on p processors, due to the load imbalance
at various times t;, different numbers p; of processors are working on the
code while the remaining p — p; processors are idle, therefore:

1 k
Sp = ——F7— Wwhere fi=1 (14)
" E?:ll 1{_7; + i ;

This case can be treated as the generalized case of Amdahl’s Law, where vari-
ous fractions of the code can be executed by a different number of processors.
Obviously, each situation, when only a number of processors smaller than p
is used, leads to the degradation of overall performance, which indicates how
important load balancing is for the parallel program performance.

An obvious idealization lies in Amdahl’s law because it only takes into
account a fixed problem size. More often, the problem size is expected to
scale with the number of processors (one of the important reasons for apply-
ing a parallel computer with distributed memory is the fact that with every
processor additional memory is added to the system thus allowing solution
to a larger problem). Thus, in [57], Gustafson proposed an alternative to
Amdahl’s Law. Rather than asking how fast a given serial program would
run on a parallel machine, he asks how long a given parallel program would
have taken to run on a serial processor [58]. Let t; and t, denote the serial
and the parallel time spent on a P processor parallel machine, respectively,
and let t; +t, = 1, then the scaled speedup of the parallel program will be
given by

_ ts+ Pt
ottty

This model is somewhat more realistic in its predictive power. Its usability
was presented in [58].

Theoretical considerations presented here as well as in the literature show
that, in computational practice, a very large number of factors will influence
the parallel execution time of an algorithm. Most of these factors are much
more likely to degrade the performance gains of parallelization rather than to
augment them. Some of the factors that should be taken into consideration
are listed below:

=ts+ Pty =P+ (1 - P)t,.

23

e The algorithm itself must be parallelizable and the data set to which
it is to be applied must be such that an appropriately large number of
processors can be applied.

e Overheads related to synchronization and memory access conflicts will
lead to performance deterioration.

e Load balancing is usually rather difficult to achieve and the lack of it
results in performance deterioration.

e Creation of algorithms that can be used on multiple processors often
leads to the increase of computational complexity of the parallel algo-
rithm over the sequential one.

e Dividing the data among multiple memory units may reduce the mem-
ory contention and improve data locality resulting in performance im-
provement.

In summary, there are a number of theoretical models that can be applied
to predict the performance of parallel algorithms. Unfortunately, all of them
are highly idealized and thus are limited to supplying general performance
expectations as well as to pointing out the most important issues that should
be taken into account when a parallelization of a sequential algorithm and
an existing sequential code is attempted. When a more detailed performance
prediction is required, then a particular model for a given problem and its
characteristics as well as the hardware, on which it is to be executed, have
to be taken into account.

6 Programming parallel computers

Moving from theoretical considerations to the computational practice, one
must consider a number of issues involved in programming parallel com-
puters. This introduction to them will follow the above described levels of
parallelization and start from the parallelization inside of a single processor
as well as a brief note about language based parallelization. It will be fol-
lowed by the discussion of writing codes for shared memory and distributed
memory computers, parallelization of existing codes and library-based par-
allelization.

24

6.1 Optimizing compilers

Optimizing compilers [100, 101] offer several optimization levels. They trans-
form a code according to the specified option(s). These transformations are
cumulative: each higher level retains the transformations / optimizations of
the previous level. The available optimization levels are typically as follows
(while the levels described below are not specific to any particular hardware
architecture and to any computer vendor, similar levels can be found across
most of them):

1. Machine-dependent scalar optimization, usually o default, which fully
exploits the machine’s scalar functional units and registers.

2. Basic block machine-independent scalar optimization works at the local
basic-block level. A basic block is a branch-less sequence of statements
ending with a conditional or unconditional branch. At this level a
compiler uses such techniques as assignment substitution, elimination
of common subexpressions, constant propagation and folding.

3. Program block machine-independent scalar optimization works at the
global program-unit level (a subroutine, function or main section) using
eliminations of redundant assignments, dead-codes and hoisting as well
as sinking scalar and array references.

4. Vector optimization (if applicable) improves the performance of pro-
grams that manipulate arrays. Consider a loop adding the correspond-
ing elements of two arrays. Within this level of optimization, the vector
CPU (if available) can add groups of array elements utilizing a single
machine instruction. For example, the following simple loop

do j=1,100
z(j) = x(3) + y(3§)

end do
will be transformed to a vector instruction
z(1:100)=x(1:100)+y(1:100)
When the loop length is greater than the vector length or when it

is unknown, the compiler will generate a loop that repeats the above
vector instruction.

25

5. Parallel optimization allows to spread work across multiple CPUs and
typically analyzes the loop structure of the code. In case of parallel
machines with vector processors, the inner loops are vectorized while
the outer loops are parallelized.

All optimization levels but the last one should generate code optimal for a
given processor and the memory structure of a given machine. The last level
of optimization is typically available on shared memory parallel computers
(most vendors of parallel computers provide Fortran and C compilers capable
of code parallelization). Early successful work on optimizing compilers for
high performance (parallel) computers can be traced to the Cray optimiz-
ing compilers for Fortran, and Kuck and Associates parallelizing compilers
for Fortran and C [7]. While this statement is open to discussion, there is
little question that Cray’s Fortran optimizing compiler was one of the best
(in terms of the quality of generated code) products existing at the times of
Cray Y-MP and Cray C-90 supercomputers. Unfortunately, its success can
be traced to the relative simplicity of the Cray architecture, few (up to 64,
but typically 8 or 16) vector processor and a large global memory. As soon
as the modern workstations with hierarchical memory are considered, the
performance of optimizing compilers becomes less satisfactory. Experiments
show a substantial performance degradation of a simple matrix multiplication
operation on an MIPS and Alpha processor based computers from SGI and
DEC, when the matrix size increased past n = 1000 [19, 18]. These results
indicate that optimizing codes for modern architectures with multiple levels
of data latency and multiple sizes of intermediate memory layers is a compli-
cated endeavor. Projects like ATLAS [99] attempt to remedy these problems
for linear algebraic operations (see also 6.7.1) but, in general, a lot more
work is required. The situation is even worse for code parallelization. While
parallelizing compilers can deal with microparallelization and matching the
code with multiple execution pipelines of modern processors, as well as with
parallelization of simple loops, they have problems with parallelization of
complicated structures of the program. The situation becomes particularly
complicated when parallelization requires a serious restructurization of the
program. It is arguable that while the compiler based parallelization will
play an increasingly important role in the implementation of algorithms (it
is, for instance, claimed that with the increasing power of computers an even
larger “window” of the code can be considered at once thus increasing com-
pilers’ ability to analyze and optimize the machine code), it will be mostly
responsible for low level parallelization and, at least for some time to come,
cannot be relied on as a method for building parallel programs. In other

26

words, implementers have to do the work themselves and the parallelizing /
optimizing compiler can fine-tune the results of their work.

6.2 Language based parallelization

The second approach to parallelization is based on the language constructs.
Two scenarios can be distinguished. First, constructs inside of the language
support various possible levels of parallelism, e.g. various versions of For-
tran (primarily High Performance Fortran) and SISAL. Second, language
constructs are geared toward high level of parallelism, e.g. Ada and Java.
Since Fortran was one of the early languages applied in large scale scientific
computing, efforts were undertaken to extend the Fortran 77 definition to
add more constructs supporting high performance and parallel computing.
These additions varied from the vector and matrix oriented operations in
Fortran 90/95 standards [11, 73] to a more thorough support of parallelism
in the High Performance Fortran [68]. Interestingly, thus far neither of these
approaches gained widespread popularity among parallel program developers
(for more details about High Performance Fortran, see chapter 77). SISAL
is an example of an attempt at bringing functional programming, which is
said to be one of the better approaches to parallel program design, to scien-
tific computing [12, 56]. The most interesting feature of SISAL is the fact
that it combines the imperative and functional programming paradigms. Al-
though initial results were quite encouraging [26, 22|, SISAL has practically
disappeared after a few years of development.

Ada was originally designed to support concurrency and thus included
support for most functions necessary to develop and implement parallel pro-
grams. However, for a variety of reasons summarized in [85], it has never
been seriously considered for scientific parallel computing application devel-
opment. For instance, although until recently the US Department of Defense
required all of its computing to be done in Ada, numerically intensive codes,
e.g. ocean modeling applications, were developed and implemented in For-
tran and translated into Ada by a separate group of programmers when
ready to be turned into a production environment. Finally, there is Java,
which also can be used to naturally develop parallel programs (e.g. through
the application of multi-threading). Since it is a relatively new language, it
is still unclear how much popularity it will gain in the scientific computing
community. The main disadvantage of Java seems to be its widely perceived
lack of efficiency (which should not be viewed as a problem with the language
itself since it was not designed for that purpose). Java Grande “community”
(among others) attempts to remedy this problem [27, 49] and time will tell

27

how successful their efforts will be (for more detailed treatment of Java as a
language for parallel computing, see chapter ?7).

6.3 Shared memory parallel algorithms and OpenMP

Parallel architectures based on a shared memory have now become common-
place and usually offer more than just a few processors. Until quite recently,
each vendor has provided its own set of commands to support writing parallel
programs. All these approaches were quite similar and consisted of directives
for managing parallel code execution; e.g. loop parallelizing directives, locks,
barriers and other synchronization primitives etc., inserted into codes written
in Fortran or C. It was only recently that OpenMP [30] emerged as a stan-
dard for code parallelization for shared memory parallel computers. While
OpenMP provides support for three basic aspects of parallel computing:

e specification of parallel execution,
e communicating between multiple thread,
e expressing synchronization between threads,

and could be potentially used to support parallelism on any computer archi-
tecture, it is best suited for shared memory environments. OpenMP direc-
tives satisfy the following format:

!$omp directive name optional clauses

Such approach allows to write the same code for both single-processor and
multiprocessor platforms. Simply, compilers which do not support OpenMP
directives or those that are working in a single-processor mode treat them
as comments.

The OpenMP uses the fork-join model of parallel execution. A program
starts execution as a single process, called the master thread of execution, and
executes sequentially until the first parallel construct is encountered. Then
the master thread spawns a specified number of “slave” threads and becomes
a “master” of the team. All statements enclosed by the parallel construct
are executed in parallel by each member of the team. Several directives
accept clauses that allow a user to control the scope attributes of variables
for the duration of the construct (e.g. shared, private, reduction, etc.). The
following code can serve as an example of a simple parallel program [10]:

28

print *,’#procs=’
read *,p
call omp_set_num_threads(p)
'$omp parallel shared(x,npoints) private(iam,np,ipoints)
iam=omp_get_thread_num()
np=omp_get_num_threads()
ipoints=npoints/np
call work_on_subdomain(x,iam,ipoints)
!'$omp end parallel

Each thread in the parallel region determines what part of the global array x
to work on. The code contains calls to OpenMP routines: omp_set_num_threads
which sets the number of threads in a parallel construct, omp_get_thread_num
which returns the number of a calling thread and omp_get_num_threads
which returns the number of threads in a parallel region. In this code, each
processor will execute the work_on_subdomain routine.

In the case of shared memory machines, the most common work-sharing
construct within a parallel region is the do-construct, which distributes iter-
ations of the do-loop among available working threads.

'$omp parallel do
do j=1,n
end do
!'$omp end parallel do

The OpenMP compiler do-construct divides the iterations of a do-loop into
subranges of the jindex and hands them to different threads, which execute
them in parallel.

Sometimes, parallelism can be expressed by means of the sections con-
struct. In the example below, functions proc_one() and proc_two() are
executed in parallel, which allows high level parallelization based on het-
erogeneous tasks and enables the OpenMP written codes to be applied also
beyond the simple loop parallelization.

!'$omp parallel sections
'$omp section
call proc_one()
'$omp section
call proc_two()
!$omp end parallel sections

29

Finally, numerical integration can serve as a slightly more complicated ex-
ample of utilizing OpenMP for parallel computing:

b x Ty
[s@demn (B fay 4t e+ 12)
where h = b_T“ and z; = a+ih,i=0,...,n. An OpenMP code to complete
this task would look like this:

h=(b-a)/n
!$omp parallel do private(x) reduction(+:sum)
do j=1,n-1
x=a+j*h
sum=sum+f (x)
end do
!$omp end parallel do
sum=h* (sum+0.5% (f (a)+£ (b)))

In this example, the reduction(+:sum) clause is used. It instructs the com-
piler that the variable sum is the target of a sum reduction operation.

The examples presented above as well as other examples are included
to give the reader a general feeling for what a code written for a given
environment looks like. For further details on OpenMP, consult [8, 10, 30].
Similarly, the references should be consulted for the details concerning the
remaining tools and environments.

6.4 Distributed memory parallelization

As indicated above (sections 3.5.2 and 4.3), parallelization for distributed
memory computers typically consists of dividing the program into separate
computational units that work independently and communicate by exchang-
ing messages. To illustrate the basics of such an approach, consider a simple
example of distributed computation of the vector norm

]|z =

Assume that there exist integers p and ¢ such that pg = n and that the
code is to be executed on a parallel computer. One of possible approaches
to parallelizing the problem is based on the master-slave approach. Here,
the program consists of two types of tasks: master task and slave tasks T;,
i =1,...,p. The following pseudo-code can illustrate this approach:

30

MASTER
1. Get n, x and choose p and q.
2. Spawn p slave tasks T;, i = 1,...,p.
3. Send q to all slave tasks T;.
4. For i =1,...,p: send numbers x(;_1)q41,-- -, Tig to T;.

5. Set sum «— 0; for ¢ = 1,...,p: receive "partial sum" from a slave task
and assign it to a variable s and sum <« sum + s.

6. Assign sum «— /sum
SLAVE
1. Receive from "MASTER" the value of gq.
2. Receive from "MASTER" ¢ numbers y1,...,y,.

3. Calculate .
S — Zy?
i=1

4. Send s to "MASTER".

While the master-slave based computing is only one of the possible ap-
proaches to distributed memory parallel computing, it illustrates the general
idea of dividing work into independent tasks and coordinating computations
through message passing. The two most popular environments supporting
this mode of computing will now be considered.

6.4.1 PVM and MPI

Parallel Virtual Machine (PVM) has been developed in 1991 by a group of
researchers at the University of Tennessee. It is a distributed-memory tool
[41] designed to develop parallel applications on networks of heterogeneous
computers. It allows to use such a heterogeneous environment as a single
computational resource. PVM consists of a daemon software that should be
run on each node of the parallel virtual machine, a console and a library,
which provides subroutines for process creation and message passing. Cur-
rently this library supports APIs for Fortran and C/C++. It should be
noted that in its philosophy the PVM environment can be considered an “in-
teractive” one. In its typical mode of operation, the PVM user works from

31

the console, initializes the heterogeneous environment, instantiates the PVM
daemons on all machines that participate in the virtual computer and starts
the execution of the main program. Experiments show that PVM sometimes
do not work well in batch processing environments [83, 82, 81].

What follows is an example of the PVM code that calculates the integral
(15) using the master-slave approach.

main() {
int myid, nprocs, howmany;
int tids[10];
float a,b,h,lsum,tol;
tids[0]=pvm_mytid () ;
myid=pvm_joingroup("integral”); /* join the group */
if (myid==0) /* i’am the first task - the master task*/
{ a=0.0;
b=3.141569;
printf ("How many processors 7 ");
scanf ("%d",&nprocs) ;
/* spawn nprocs-1 tasks */
howmany=pvm_spawn ("int01", (char**)0,0,"*" ,nprocs-1,&tids[1]);
/* wait for other processes */
while(pvm_gsize("integral") !=nprocs)
/* send data */
pvm_initsend (PvmDataDefault);
pvm_pkint (&nprocs,1,1);
pvm_pkfloat(&a,1,1);
pvm_pkfloat(&b,1,1);
pvm_bcast ("integral",10);
}
else /* I’'m a slave */
{ pvm_recv(-1,10);
pvm_upkint (&nprocs,1,1);
pvm_upkfloat(&a,1,1);
pvm_upkfloat (&b,1,1);
}
/* find the approximation */
h=(b-a)/nprocs;
a=a+h*myid;
b=a+th;

32

1sum=0.5%h* (f (a)+f (b)) ;
/* gather partial results */
pvm_reduce (PvmSum,&lsum,1,PVM_FLOAT,20,"integral",0);
if (myid==0)
{ printf ("%f\n",lsum);
}
pvm_barrier("integral ,nprocs);
pvm_exit () ;

}

It should be noted that in this as well as in the previous example of
calculating the norm of the vector, the master is performing tasks that are
completely different from the tasks of the slave processes. This does not need
to be the case. If the computational workload of each of the slave processes is
substantially larger than that of the master, the master should also perform
some work (possibly a smaller overall amount than the slaves), while waiting
for the slaves to complete their tasks. This approach, while slightly more
difficult to implement, helps to improve the load balancing (the master is
not idle) and thus results in a better overall performance (see section 5.3).

Message Passing Interface (MPI) has been developed in 1993 [77] by re-
searchers from Argonne National Laboratory. Over time, it has become a
de-facto standard for message passing parallel computing (superseding PVM,
which is slowly becoming extinct). MPI provides an extensive set of commu-
nication subroutines including point-to-point communication, broadcasting
and collective communication. It has been implemented on a variety of paral-
lel computers including massively parallel computers, clusters and networks
of workstations. Due to its popularity, a number of open source and com-
mercial tools and environments have been developed to support MPI based
parallel computing [55].

As an example, consider again the integration problem. However, this
time, it will be solved using the SPMD model. Here each processor calculates
its own part of the integral and then all of them exchange partial sums. At
the end of the process, each processor calculates and contains its own local
copy of the integral. While it may seem unreasonable to assume that each
processor needs to calculate its own copy of the integral, one can assume
that this is just a part of a larger code and these integral values are used by
each processor independently in subsequent calculation.

integer ierr, myid, numprocs, rc, j
real*8 x, sum, global_sum, a, b, my_a, my_b, my_h, h

33

read *,a,b
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
h=(b-a) /numprocs
my_a=a+myid*h
my_b=my_a+h
sum=h* (sum+0.5* (f (my_a)+f (my_b)))
* collect all the partial sums
call MPI_REDUCE(sum,global_sum,1,MPI_DOUBLE_PRECISION,MPI_SUM,O,
$ MPI_COMM_WORLD,ierr)
* node O prints the answer.
if (myid .eq. 0) then
print *,’Result is ’,global_sum
endif
call MPI_FINALIZE(rc)
stop
end

6.5 Shared-distributed memory environments

As indicated above (Section 3.5), there are a number of approaches to imple-
menting parallel algorithms on shared-distributed memory computers. Such
a parallelization can be done by treating such a computer as a virtual shared
memory environment (and use, for instance, OpenMP), as a distributed
memory machine (and use MPI). However, to be able to use the machine to
the fullest extent, one may want to consider a mixed approach. A modifica-
tion of the above code for the calculation of the integral that utilizes jointly
MPI and OpenMP can illustrate such an approach.

parameter (n=1000)
integer ierr, myid, numprocs, rc, j
real*8 x, sum, global_sum, a, b, my_a, my_b, my_h, h

read *,a,b

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
my_h=(b-a) /numprocs

34

my_a=a+myid*my_h
my_b=my_a+my_h
h=(my_b-my_a)/n
'$omp parallel do private(x) reduction(+:sum)
do j=1,n-1
x=my_at+j*h
sum=sum+f (x)
end do
!'$omp end parallel do
sum=h* (sum+0.5* (f (my_a)+f (my_b)))
* collect all the partial sums
call MPI_REDUCE(sum,global_sum,1,MPI_DOUBLE_PRECISION,MPI_SUM,O,
$ MPI_COMM_WORLD,ierr)
* node O prints the answer.
if (myid .eq. 0) then
print *,’Result is ’,global_sum
endif
call MPI_FINALIZE(rc)
stop
end

Here, the division of the workload is initially done in the MPI environ-
ment. Then, on each shared memory computer, the OpenMP directives are
used to perform loop parallelization. Obviously, such an approach is slightly
more complicated and more tedious to implement but, as a result, the code
matches the underlying hardware architecture, which may lead to further
performance gains.

6.6 Parallelization of existing codes

Consider the situation when an existing sequential code is to be parallelized.
As stated above, at the present time one cannot count on the parallelizing
compiler (or any other tools) to mechanize and substantially simplify the
process of restructuring an old code for parallel processing. Most of the
necessary work must be done manually and must be based on a clear un-
derstanding of the inner-workings of the code. While each case has to be
treated separately and will involve its own particular challenges, there are
some general rules that follow from what has been said above. First, the
selection of the approach: while an OpenMP loop parallelization may be
the best solution (and may be the easiest to implement) in the case of the

35

code that is to run on a shared memory parallel computer, this approach
may not be the best in the long run. It seems clear that in the near future
most of the really large computers are going to be based on the distributed
memory paradigm and may, or may not, consist of shared memory nodes. If
so then the rational advice is to seriously consider an MPI-based paralleliza-
tion. The MPI-based approach may be combined with the OpenMP when
a shared-distributed memory hardware is to be used, but this may be an
overkill not worth the effort. While there exist a number of other tools and
environments that can be utilized, and each one of them has its own merits,
it is arguable that if the goal of the project is to develop and apply software
then researchers should stay with proven technology, which represents the
state of the art at the time. For this and other reasons presented above,
at this time Java does not seem to be ready to appear in the solvers for
computationally intensive tasks.

Second, an important issue is the analysis of the existing code. Here the
lessons learned from the application of Amdahl’s Law play an important role.
It follows from it that attention must be paid to the most computationally
intensive and therefore most time consuming parts of the code. It makes no
difference whether a part of the code, which takes only 10% of the total time,
is perfectly parallelized, if the remaining parts of the code are not. Therefore,
the early stages of the code analysis should consist of benchmarking and
time-profiling. As soon as a well-developed profile is created, it becomes
clear where to focus further efforts.

Finally, one more area needs to be seriously considered. While an old
code may be used for many years, there exists a possibility that this code,
or its parts, can be replaced by the existing modules stored, among oth-
ers, in the Netlib repository [6], the ACM TOMS [3] library or announced,
among others, on the NA Digest forum. Recent years have witnessed a rapid
development of codes for the efficient parallel solution of a wide variety of
mathematical problems. These codes have been implemented and tested on
a number of parallel computers and, very often, they are very high quality
both from the point of view of numerical properties as well as parallel per-
formance. This approach can be called library-based parallelization. (In the
next section, a discussion of software available from one of the more suc-
cessful projects in the area of numerical linear algebra for dense matrices is
presented.) It needs to be stressed, that the above discussion contains only
a fragment of what is available; see Chapters 7?7, ?7?, 7?7 for more examples
of existing software. Overall, before an attempt is made to write a parallel
code to solve a given problem, a thorough search should be conducted for ex-
isting software because chances are that a ready-to-use routines are already

36

available.

6.7 Library-based parallelization

There are a great many applications for which software has been imple-
mented and which can be used when solving a particular computational
problem. This can be done on two levels. First, there exist complete soft-
ware packages that can be utilized to solve problems in parallel, e.g. parallel
PDE solver ELLPACK [66, 89]. There exist also several packages designed
for supporting parallel computing involving sparse matrices [47, 54, 102].
While some of these environments are definitely state-of-the-art and using
them is preferable to developing the code oneself, there are problems that
may not fit well enough into the existing software. There are also new algo-
rithms that have to be implemented. In this case, there may exist libraries of
“building blocks” that should be used in the process. What follows is a brief
introduction to one of the more robust libraries supporting the development
of high performance and parallel codes involving matrix operations.

6.7.1 BLAS and LAPACK

In the area of linear algebraic computations for dense and band structured
matrices, there exists a de facto standard for writing high performance soft-
ware. More precisely, there exists a collection of interdependent software
libraries that became the standard tool for dense and banded linear software
implementation (even though the latter has been recently challenged by the
work of F. Gustafson [59]).

The first step in the general direction took place in 1979, when the BLAS
(Basic Linear Algebra Subroutines) standard was proposed [71|. Researchers
realized that linear algebra software (primarily for dense matrices) consists
of a number of basic operations (e.g. vector scaling, vector addition, dot
product, etc.). These fundamental operations have been defined as a collec-
tion of Fortran 77 subroutines. The next two steps took place in 1988 and
1990, respectively, when the collection of matrix-vector and matrix-matrix
operations have been defined [38, 37]. These two developments can be traced
to the hardware changes happening at this time. The introduction of hierar-
chical memory structures resulted in the increasing need for the development
of algorithms that would support data locality (move the block of data once,
perform all the necessary operations on it and move a data back to the
main memory and proceed with the next data block). It was established
that to achieve this goal one should rewrite linear algebra codes in terms of

37

block operations and such operations can be naturally represented in terms
of matrix-vector and matrix-matrix operations.

The BLAS routines were used in the development of linear algebra li-
braries that solved a number of the standard problems. Level 1 BLAS (vec-
tor oriented operations) was used in the development of the LINPACK [36]
and EISPACK |[53] libraries devoted to the solution of linear systems and
eigenproblems. The main advantages of these libraries were: the clarity and
readability of the code, its portability as well as the possibility of hardware
oriented optimization of the BLAS kernels.

The next step was the development of the LAPACK library [15]|, which
“combined” the functionalities available in the LINPACK and EISPACK li-
braries. LAPACK was based on utilizing level 3 BLAS kernels, while the
BLAS 2 and 1 routines were used only when necessary. It was primarily
oriented toward single processor high performance computers with vector
processors (e.g. Cray, Convex) or with hierarchical memory (e.g. SGI Ori-
gin, HP Exemplar, DEC Alpha workstations etc.). The LAPACK was also
designed to work well with shared memory parallel computers, providing
parallelization inside the level 3 BLAS routines [40]. Unfortunately, while
this performance was very good for the solution of linear systems (this was
also the data used at many conferences to illustrate the success of the ap-
proach), the performance of eigenproblem solvers (for both single processor
and parallel machines) was highly dependent on the quality of the underlying
BLAS implementation and very unsatisfactory in many cases [19, 18].

In algebraic notation, the BLAS operations have the following form (de-
tailed description of the BLAS routines can be found in [15, 39]):

Level 1: vector-vector operations:

ey —ar+y, T ar,y — T,y < x, dot — zly, nrm2 — |z,
asum — [lre(z)[ly + [lim(z)]]1.

Level 2: matrix-vector operations:
e matrix-vector products: y «— aAzx + By, y — aATx + py

rank-1 update of a general matrix: A «— axy’ + A

rank-1 and rank-2 update of a symmetric matrix: A «— azz? + A,
A — azy? + ayz + A,

multiplication by a triangular matrix: x « Tz, z « T7x,

solving a triangular system of equations: z « T 'z, 2 « T Tx.

38

Level 3: matrix-matrix operations:

e matrix-matrix products: C «— aAB + 8C, C «— aATB + BC, C «
aABT + 8C, C — aATBT + 5C

e rank-k and rank-2k update of a symmetric matrix: C «— aAAT + BC,
C—aATA+8C,C — aATB+aBTA+5C, C — aABT + aBAT +
pC,

e multiplication by a triangular matrix: B « oT'B, B «— oT"B, B «
aBT, B — aBT7,

e solving a triangular system of equations: B « oI 'B, B « oT 1B,
B« aBT ', B« aBT".

Observe that each operation from the BLAS 2 library can be expressed
in terms of BLAS 1 operations. Consider, for instance, a matrix-vector
multiplication

y — aAz + Py (16)

can be conceptualized in terms of a sequence of dot-products (routine DOT),
vector scalings (_ SCAL) or vector updates (_ AXPY).

2k — Agsx, for k=1,....m (_DOT)
y — By (_SCAL) (17)
y—y+az (_AXPY)

Observe also that regardless of the fact that the above described algo-
rithm and procedure (16) are equivalent, the application of the BLAS 2 based
approach can substantially reduce the amount of processor-memory commu-
nication and thus reduce the overall execution time. Similarly, operations
represented by the BLAS 3 routines can be expressed in terms of lower level
BLAS. For instance, operation

C — aAB + pC (18)
can be expressed as
Cup «— aABy + BCyg, for k=1,... n, (19)

which is a sequence of operations denoted by (16). It should be also noted
that, as in the case of replacing level 1 BLAS operations by level 2 BLAS,
the application of (18) instead of (19) reduces the total amount of processor-
memory communication. More precisely, to illustrate the advantages of the

39

BLAS loads and stores | flops ratio
Yy<—y+oar 3n 2n 3:2
Yy — aAx + By mn +n+ 2m 2m + 2mn 1:2
C—aAB+p3C | 2mn+mk+kn | 2mkn+2mn | 2:n

Table 1: BLAS: memory references and arithmetic operations

MFlops | sec.
BLAS 1 | 93.81 21.32
BLAS 2 | 355.87 | 5.62
BLAS 3 | 141844 | 1.41

Table 2: Matrix multiplication on the Pentium IIT 866MHz

application of higher level BLAS, consider the total number of arithmetical
operations and the amount of data exchanged between the processor and
memory. Table 1 [39] depicts the ratio of the number of processor-memory
communications to the number of arithmetical operations for m =n = k.

The higher the level of BLAS, the more favorable the ratio becomes.
(The number of operations performed on data increases relative to the total
amount of data movement.) This has a particularly positive effect in the
case of hierarchical memory computers (see also Section 3.2).

To illustrate that this course of action plays an important role not only
for “supercomputers” but also for more “ordinary” architectures, Table 2
presents processing speed (in MFlops) achieved during the completion of the
task C' < aAB + pC using BLAS 1, 2 and 3 kernels (utilizing algorithms 17
and 19) for m = n = k = 1000 on a single-processor PC with Intel Pentium
ITT 866MHz processor with 512MB RAM.

There are two ways of using BLAS routines in parallel computing. First,
very often, BLAS routines are parallelized by the computer hardware ven-
dors. For instance, a call to the level 3 BLAS routine _ GEMM may result
in parallel execution of matrix-matrix multiplication. Any code that utilizes
_ GEMM will automatically perform this operation in parallel. While some
computer vendors spend considerable amount of time and resources to de-
liver highly optimized BLAS kernels (routines accumulated in Cray’s scilib
library were one of the best in delivered performance, while currently IBM’s
ESSL library is also very well optimized), this does not have to be the case.
In addition, only some of BLAS kernels are parallelized (one of the typical

40

and very important exceptions are routines for symmetric matrices stored in
a compact form) and they are typically parallelized for shared memory en-
vironments only (for an example of problems encountered in parallelization
of BLAS kernels, see [17]). In short, parallel performance of BLAS routines
cannot be taken for granted (especially since they are primarily optimized
for single processor performance in the hierarchical memory environment).
Taking this into account BLAS kernels should be rather utilized to develop
parallel programs where the BLAS routines will run on separate processors.
To illustrate the main idea behind such an approach, consider matrix update
procedure based on the formula C' < aAB + $C, which can be rewritten as:

Cu Cr | _ N A A Bi1 Bio 8 Ci1 Cr2 (20)

Co Co Ag1 Ay By1 Ba Co Co
Applying the definition of matrix multiplication, the following block algo-
rithm to calculate matrix C is obtained.

Cn — aAyBu +pCn /1
Ciy «— aApBy +Cip /2/
Ci2 — aA11 B2+ 3C12 /3/
Cia «— aA1pByy +C11 /4/
Co1 «— aAyaBo + 3Cy /5/
Co1 «— aAo1 By +Ca1 /6/
Coo — aAyaBog + 3Co 7/
Coy — aAo1Bia+Cp /8/

(21)

Observe that this algorithm allows for parallel execution of operations /1/,
/3/, /5/, /7/ and in the next phase of operations /2/, /4/, /6/, /8/. Obvi-
ously, it is desirable to divide large matrices into a larger number of blocks
(e.g. to match the number of available processors). The order of opera-
tions may also need to be adjusted to reduce the memory access conflicts.
The application of this approach can be illustrated by the block-Cholesky
method for solving systems of linear equations for symmetric positive definite
matrices.

It is well known that there exists a unique decomposition for such ma-
trices

A=LLT (22)

where L is a lower triangular matrix. There exists also a simple algorithm
for determining the matrix L with an arithmetical complexity of O(n?). Its
analysis allows one to see immediately that it can be expressed in terms

41

of calls to the level 1 BLAS. Consider how it can be translated into block
operations expressed in terms of level 3 BLAS. Formula (22) can be rewritten
in the following way:

A A Ass Ly Lf, L3 L
Agr Agp Agg | = | La1 Lo L3y L, (23)
Az1 Az Asg L31 L3y Lg3s L
Thus
Ly L Ly Ly, Ly LY
A= | LauL{, LaLj + LaLj, Loy L3, + Loy L,

Ly Ly LsiL3y + LsoLdy Lyt L) + LaaLi; + Las L

After the decomposition Aj; = L1y L1;, which is the same decomposition
as the original one but of smaller size, appropriate BLAS 3 kernels can be
applied in parallel to calculate matrices Lo; and L3y by applying in parallel
equalities Ao = L21L1T1 and Az = L31L1T1. In the next step, equation

Agy = Loy LY, + Lo LL,,

can be used. Thus the decomposition L22L2T2 for the matrix A9y — L21L2T1 is
used to calculate the matrix Loo. Finally, Lgs can be found from

L3y = (Ao — L1 L3))(L3) ™"

In a similar way, subsequent block columns of the Decomposition can
be calculated. Finally, it should be noted that the parallelization of the
matrix multiplication presented here as well as the Cholesky decomposition
are examples of the divide-and-conquer method, which is one of the popular
approaches to algorithm parallelization.

6.7.2 BLACS, PBLAS and ScaLAPACK

At the time when the LAPACK project was completed, it became clear that
there is a need to develop similar software to solve linear algebraic problems
on distributed memory architectures. Obviously, this could have been done
"by hand" using level 3 BLAS kernels and a software environment like PVM
or MPI. However, this would have made such an approach dependent on
their existence and backward compatibility. Since PVM is already slowly
disappearing, while imposing strict backward compatibility on MPI may be
holding it to too high a standard, the decision not to follow this path seems

42

to be very good indeed. It has led in the first place to the development of
the BLACS (Basic Linear Algebra Communication Subroutines), a package
that defines portable and machine independent collection of communication
subroutines for distributed memory linear algebra operations [45, 98]. The
essential goals of BLACS are:

e simplifying message passing in order to reduce programming errors,

e providing data structures to simplify at the level of matrices and their
subblocks,

e portability across a wide range of parallel computers, including all
distributed memory parallel machines and heterogenous clusters.

In the BLACS, each process is treated as if it were a processor — it
must exists for the lifetime of the BLACS run and its execution can affect
other processes only through the use of message passing. Processes involved
in the BLACS execution are organized in two-dimensional grids and each
process is identified by its coordinates in a grid. For example, if a group of
consists IV, processes then the grid will have P rows and ¢ columns, where
P-Q = Ny < N,. A process can be referenced by its coordinates (p, q),
where 0 <p< Pand 0 <¢g< Q.

The BLACS provides structured communication in a grid. Processes can
communicate using the point-to-point paradigm or it is possible to orga-
nize communication (broadcasts) within a “scope” which can be a row or a
column of a grid, or even the whole grid. Moreover, the performance of com-

munication can be improved by indicating a particular hardware topology
[45].

integer iam, nprocs, cntx, nrow, ncol, myrow, mycol, i, j
integer lrows, lcols
real*8 a(3), h

call blacs_pinfo(iam,nprocs)
if (nprocs.eq.-1) then
if (iam.eq.0) then
print *,’How many processes 7’
read *, nprocs, a(1l), a(2)
end if
call blacs_setup(iam,nprocs)
end if

43

* determine grid size
lrows=int (sqrt (real (nprocs)))
lcols=lrows
* init the grid
call blacs_get(0,0,cntx)
call blacs_gridinit(cntx,’C’,1lrows,lcols)
call blacs_gridinfo(cntx,nrow,ncol,myrow,mycol)
* broadcast or receive
if ((myrow.eq.0).and.(mycol.eq.0)) then
call dgebs2d(cntx,’A’,’ ’,2,1,a,4)
else
call dgebr2d(cntx,’A’,’ ?,2,1,a,4,0,0)
end if

h=(a(2)-a(1))/real (nprocs)

a(1)=a(1)+real(iam)x*h

a(2)=a(1)+h

a(3)=0.5*h*(f(a(1))+f(a(2)))

call dgsum2d(cntx,’A’,’ ?,1,1,a(3),4,0,0)

if ((myrow.eq.0).and.(mycol.eq.0)) then
print *,’result is ’,a(3)

end if

call blacs_barrier(cntx,’A?)

call blacs_exit(0)

This program is analogous to the program presented in Section 6.4.1.
This time, however, the communication infrastructure is expressed in terms
of calls to BLACS routines. This illustrates the fact that while geared toward
linear algebra, the BLACS can be also utilized as a general set of commu-
nication routines. It should be also noted that several version of BLACS
were implemented based on PVM, MPI and vendor-provided message pass-
ing routines.

The PBLAS (Parallel Basic Linear Algebra Communication Subprograms)
[31] is a set of distributed vector-vector, matrix-vector and matrix-matrix op-
erations (analogous to the sequential BLAS) with the aim of simplifying the
parallelization of linear algebra programs. The basic idea of PBLAS is to
distribute matrices among distributed processors (i.e. BLACS processes)
and utilize BLACS as the communication infrastructure. The general class

44

of such distributions can be obtained by matrix partitioning like

Ainn ... A
A=)
A1l .. Anm

where each subblock A;; is ny X ny. These blocks are mapped to processes
by assigning A;; to the process whose coordinates in a grid are

((i — 1)modP, (j — 1)modQ).

Finally, ScaLAPACK is a library of high-performance linear algebra rou-
tines for distributed-memory message-passing MIMD computers and net-
works of heterogeneous computers [21]. It provides the same functionality as
LAPACK for workstations, vector supercomputers, and shared-memory par-
allel computers. As LAPACK was developed by utilizing calls to the BLAS
routines, ScaLAPACK is based on calls to the BLACS and PBLAS kernels.

Summarizing, the current state of the art of both compiler-based and
language-based parallelization is such that neither can be relied on when
considering efficient implementation of parallel algorithms. In the best case,
the optimizing compiler should be able to fine-tune the hand-parallelized
code to match the low level parallelism available in the hardware and to
match various detailed hardware parameters of a given high performance
computer (e.g. processor characteristics, structure, sizes and latencies of
various levels of cache memories, etc.). When considering parallelization of
an existing code to be executed on one of the available parallel computers,
the availability and popularity of environments supporting such a process
should be selected. At present, the best choices seem to be OpenMP, MPI
or a combination of them. Attention needs to be paid to the large and
constantly growing number of existing libraries of modules out of which
parallel programs can be assembled as well as to complete problem solving
environments that can be applied to efficiently find the solution.

7 Concluding Remarks

A few predictions for the future of parallel scientific computing can be risked
on the basis of the above summary of the state of the art in parallel com-
puting. The development of computer architectures is clearly pointing out
to the increasing importance of parallel computing. The newest processors,
which are about to become the standard for workstations, e.g. the Itanium

45

architecture [5| from Intel or the Opteron and Athlon 64 architectures from
AMD [1], involve a continuous increase of internal complexity (e.g. ever more
sophisticated branch prediction), increased word size to 64 bits and intro-
duce various forms of threading [5]. Each of these factors increases the total
number of instructions that will be executed inside of the processor at any
given time. While the available software tools (e.g. the optimizing compil-
ers) are lagging behind the advances in computer hardware, their abilities are
steadily improving and they should be able to support microparallelization
successfully as well as to handle hierarchical memory latencies for a given
architecture.

For smaller and medium size problems (where these notions are dynamic
and their extensions change together with hardware capabilities), worksta-
tions with multiple processors and global shared memory become very pop-
ular. At the present time, dual-processor desktop computers have become
so popular that their applicability to video processing and multimedia pro-
duction has been thoroughly analyzed in the AV Video Multimedia Producer
magazine [60]. This indicates clearly that parallel computing “has reached
the masses.” At the same time, on the high end of parallel computing,
further substantial increase in computational power is about to take place.
The three leading projects are: a 40 Tflop computer from Cray to be in-
stalled at Sandia National Laboratory in 2004 (Red Storm Project), the 100
Tflop ASCI Purple (consisting of 12544 processors) and the 131072 processor
BlueGene/L computer capable of peak performance of 360 Tflops. The latter
machines will be built by IBM and installed in 2005 in Lawrence Livermore
National Laboratory [32].

In the context of scientific computing, parallelization can be viewed on
multiple levels that are nicely illustrated by the dense linear algebra software
discussed above. On the low level, highly optimized building blocks will
continue to be developed (e.g. BLAS kernels) with optimization coming
from the hardware vendors or from research projects such as the ATLAS
project. These building blocks will be combined into software libraries (e.g.
ScaLAPACK). They will be also utilized in the development of environments
designed for the solution of a class of problems (e.g. eigensolvers for complex
symmetric non-Hermitian matrices, parallel solutions to various classes of
constraint optimization problems, large scale data mining problems, etc.).

For shared memory parallel computers, it can be expected that tools
similar to OpenMP will remain a standard for software writing, while the
language extensions and parallelism supporting languages like Java will take
some time to reach the required level of efficiency for the solution of larger
problems. Both these approaches will be used in building software libraries,

46

or will be combined with the use of software modules stored in various li-
braries to solve real-life applications. Due to the relative simplicity of the
underlying architecture and a substantial body of knowledge about writing
software for shared memory computers that has been accumulated over more
than 20 years of their existence, it will be possible to achieve a high level of
efficiency relatively easily.

The situation will be slightly more complicated in the case of distributed
memory environments (clusters and top-of-the-line supercomputers). Here,
the distributed computing model based on message passing is the most likely
to remain the standard for software writing and tools like the MPI (which
has evolved into MPI 2 [2]) are most likely to be used to support it. Outside
of the simpler well-structured problems that are easily amenable to paral-
lelization, and afford high levels of efficiency, a lot of work in performance
tuning will be required. In some cases, this work may be sometimes avoided
due to the fact that the wall-clock problem-solving time is the most impor-
tant for the user. The users may accordingly be willing to forgo the extra
effort in code tuning and instead add more/faster hardware thus achieving
the required/acceptable solution time. However, it is very likely that the
solution of extremely large problems on computers with multiple layers of
latencies (in current supercomputers of the ASCI project at least seven levels
of latency can be accounted for) will still be mostly done “by hand” with the
solution being individually developed for each particular problem to match
the underlying hardware architecture.

Another approach, which also follows the general reasoning that more
hardware can be substituted for fine tuning and “local” efficiency, is the grid.
While it is unclear whether this is the computing paradigm for the future
(many think so and are likely to be correct, but the real applications have
not materialized yet), clearly there exist classes of computational problems
that even today can benefit from the grid-like architecture and the avail-
ability of unused computational power. Any problem that can be divided
into a number of relatively small (computational time between a few hours
and a day on the weakest machines that are a part of the grid) and com-
pletely independent tasks that also has a favorable ratio of computation to
communication (a small amount of data is transferred across the grid while
a large amount of computation is then applied to it) is a definite candidate
for a grid-based solution. Due to the steadily increasing network bandwidth
and growing amount of available unused computational power, a very large
amount of research is devoted to this area (with large companies such as IBM
becoming seriously financially involved in such efforts). It can be therefore
expected, that while the fruits of the research will be available some time in

47

the future, this is and will remain for some time to come one of the hottest
research areas in distributed computing. In this context, it is worth men-
tioning that in addition to the focus on the plain computational power and
efficiency, the grid also involves attempts of adding intelligence to problem
solving. Here it is assumed that large problems will have separate parts that
may run best on different computers. For instance, a part of the problem
may work well on a shared memory vector machine, while another part may
be matched with a cluster computer. The environment is to recognize this
and try to use this information to optimize the solution process. One of
the more interesting projects in this group is the NetSOLVE environment
[28, 29, 86].

While some of predictions presented here may not materialize, one thing
is for certain, parallel and distributed computing is taking over the world of
computing — it is here to stay and to grow.

References

[1] http://www.amd.com /us-en/Weblets/0,7832 8366,00.html.
[2] http://www.mpi-forum.org/docs/docs.html.

[3] ACM Trasaction on Mathematical Software.
http://www.acm.org/toms.

[4] The Beowulf Project. http://www.beowulf.org.
[5] Intel Itanium Architecture Software Developer’s Manual. Intel.
[6] The netlib repository. http://www.netlib.org.

[7] Supercomputer Prospectives — 4th Jerusalem Conference on Informa-
tion Technology, Maryland, May 1984. IEEE Computer Society Press.

[8] OpenMP C and C++ application program interface.
http://www.openmp.org, October 1998.

[9] Intel Architecture Optimization. Reference Manual. Intel, 1999.

[10] OpenMP Fortran application program interface.
http://www.openmp.org, November 2000.

[11] J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagner. Fortran
95 Handbook. MIT Press, 1997.

48

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. J. Allan and R. R. Oldehoeft. HEP SISAL: Parallel functional
programming. In J. S. Kowalik, editor, Parallel MIMD Computation:

HEP Supercomputer and Its Applications, Scientific Computation Se-
ries, pages 123-150. MIT Press, Cambridge, MA, 1985.

P. Alpatov, G. Baker, H. C. Edwards, J. Gunnels, G. Morrow, J. Over-
felt, and R. van de Geijn. PLAPACK: Parallel linear algebra libraries

design overview. In Proceedings of Supercomputing’97 (CD-ROM), San
Jose, CA, Nov. 1997. ACM SIGARCH and IEEE.

P. R. Amestoy, M. Daydé, and I. S. Duff. Use of level 3 BLAS in the
solution of full and sparse linear equations. In J.-L. Delhaye and E. Ge-
lenbe, editors, High Performance Computing: Proceedings of the In-
ternational Symposium on High Performance Computing, Montpellier,
France, 22-24 March, 1989, pages 19-31, Amsterdam, The Nether-
lands, 1989. North-Holland.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostruchov,
and D. Sorensen. LAPACK User’s Guide. SIAM, Philadelphia, 1992.

G. Baker, J. Gunnels, G. Morrow, B. Riviere, and R. van de Geijn.
PLAPACK : High performance through high-level abstraction. In Pro-
ceedings of the 1998 International Conference on Parallel Processing
(ICPP ’98), pages 414-423, Washington - Brussels - Tokyo, Aug. 1998.
IEEE USA.

I. Bar-On and M. Paprzycki. A parallel algorithm for solving the com-
plex symmetric eigenproblem. In M. Heath et al., editors, Proceedings
of the STAM Conference on Parallel Processing for Scientific Comput-
ing, Philadelphia, 1997. STAM.

I. Bar-On and M. Paprzycki. A fast solver for the complex symmet-
ric eigenproblem. Computer Assisted Mechanics and Engineering Sci-
ences, 5:85-92, 1998.

[. Bar-On and M. Paprzycki. High performance solution of complex
symmetric eigenproblem. Numerical Algorithms, 18:195-208, 1998.

N. H. F. Beebe. EISPACK: numerical library for eigenvalue and eigen-
vector solutions. World-Wide Web document., 2001.

L. Blackford et al. ScaLAPACK User’s Guide. SIAM, Philadelphia,
1997.

49

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

D. Bollman, F. Sanmiguel, and J. Seguel. Implementing FFTs in
SISAL. In J. T. Feo, C. Frerking, and P. J. Miller, editors, Proceedings
of the Second Sisal User’s Conference, pages 59-65, Livermore, CA,
1992. LLNL. CONF-9210270.

W. Brainerd, C. Goldbergs, and J. Adams. Programmers Guide to
Fortran 90. McGraw-Hill, 1990.

L. Brodsky. Scale grid computing down to size. NetworkWorld, January
27:47, 2003.

J. Burt. Grid puts supercomputing at enterprises’ fingertips. eWeek,
January 20:32, 2003.

D. C. Cann, J. Feo, and T. DeBoni. SISAL 1.2: High-performance
applicative computing. In Proceedings of the 2nd IEEE Symposium on
Parallel and Distributed Processing (2nd SPDP’90), Dallas, 1990.

B. Carpenter et al. Toward a java environment for SPMD program-
ming. Lectrue Notes in Computer Science, 1470:659-668, 1998.

H. Casanova and J. Dongarra. NetSolve: A network-enabled server
for solving computational science problems. The International Jour-
nal of Supercomputer Applications and High Performance Computing,
11(3):212-223, Fall 1997.

H. Casanova and J. Dongarra. Applying NetSolve’s network-enabled
server. IEEE Computational Science & Engineering, 5(3):57-67, July/
Sept. 1998,

R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon. Parallel Programming in OpenMP. Morgan Kaufmann
Publishers, San Francisco, 2001.

J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker,
and R. Whaley. LAPACK working note 100: A pro-
posal for a set of parallel basic linear algebra subprograms.
http://www.netlib.org/lapack/lawns, May 1995.

B. A. Cipra. Sc2002: A terable time for supercomputing. SIAM News,
36(2), 2003.

M. J. Daydé and I. S. Duff. The RISC BLAS: a blocked implemen-
tation of level 3 BLAS for RISC processors. ACM Transactions on
Mathematical Software, 25(3):316-340, 1999.

50

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadel-
phia, 1997.

J. Dongarra. Performance of various computer using standard linear
algebra software. http://www.netlib.org/benchmark /performance.ps.

J. Dongarra, J. Bunsch, C. Moler, and G. Steward. LINPACK User’s
Guide. STAM, Philadelphia, 1979.

J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A set of level 3
basic linear algebra subprograms. ACM Trans. Math. Soft., 16:1-17,
1990.

J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An extended
set of fortran basic linear algebra subprograms. ACM Trans. Math.
Soft., 14:1-17, 1988.

J. Dongarra, I. Duff, D. Sorensen, and H. Van der Vorst. Solving
Linear Systems on Vector and Shared Memory Computers. SIAM,
Philadelphia, 1991.

J. Dongarra, 1. Duff, D. Sorensen, and H. Van der Vorst. Numerical
Linear Algebra for High Performance Computers. STAM, Philadelphia,
1998.

J. Dongarra et al. PVM: A User’s Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, 1994.

J. Dongarra, F. Gustavson, and A. Karp. Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine. STAM
Rev., 26:91-112, 1984.

J. Dongarra and L. Johnsson. Solving banded systems on parallel
processor. Parallel Computing, 5:219-246, 1987.

J. Dongarra and D. Walker. Software libraries for linear algebra com-
putations on high performance computers. SIAM Review, 37:73-83,
1995.

J. J. Dongarra and R. C. Whaley. LAPACK working note 94: A user’s
guide to the BLACS v1.1. http://www.netlib.org/blacs, May 1997.

ol

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

I. S. Duff, M. A. Heroux, and R.. Pozo. An overview of the Sparse Basic
Linear Algebra Subprograms: The new standard from the BLAS Tech-
nical Forum. ACM Transactions on Mathematical Software, 28(2):239—
267, June 2002.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman.
Yale Sparse Matrix Package (YSMP) — I : The symmetric codes. Int.
J. Numer. Meth. in Eng., 18:1145-1151, 1982.

R. Ekersand, K. Cullers, J. Billingham, and L. Scheffer. A Roadmap
for the Search for Extraterrestrial Intelligence. SETI Press, 2002.

A. Ferrari. JPVM: Network parallel computing in java. Concurrency:
Practice and FExperience, 10, 1998.

M. Flynn. Some computer organizations and their effectiveness. IEEE
Trans. Comput., C-21:94, 1972.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and
High Performance Computing, 11(2):115-128, Summer 1997.

K. Gallivan, M. Heath, E. Ng, J. Ortega, B. Peyton, R. Plemmons,
C. Romine, A. Sameh, and R. Voight. Parallel Algorithms for Matriz
Computations. STAM, Philadelphia, 1991.

B. Garbow, J. Boyle, J. Dongarra, and C. Moler. Matriz Eiigensystems
Routines — EISPACK Guide Extension. Lecture Notes in Computer
Science. Springer-Verlag, New York, 1977.

George, A. and Ng, E. SPARSPAK : Waterloo sparse matrix package
“User’s Guide” for SPARSPAK-B. Research Report CS-84-37, Dept.
of Computer Science, Univ. of Waterloo, 1984.

W. Gropp and E. Lusk. A User’s Guide for mpich, a Portable Imple-
mentation of MPI version 1.2.0.

J. R. Gurd. The manchester dataflow machine. In I. S. Duff and
J. K. Reid, editors, Vector and Parallel Processors in Computational
Science, pages 49-62. North-Holland, 1985. Computer Physics Com-
munications 37 1-3 1985.

J. Gustafson. Reevaluating Amdahl’s law. Comm. ACM, 31:532-533,
1988.

92

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]
[68]

[69]

[70]

J. Gustafson, G. Montry, and R. Benner. Development of parallel
methods for a 1024-processor hypercube. STAM J. Sci. Stat. Comput.,
9:609-638, 1988.

F. G. Gustavson. New generalized data structures for matrices lead to
a variety of high performance algorithms. Lecture Notes in Computer
Science, 2328:418-436, 2002.

F. G. Gustavson. Waiting for your chip to come in. AV Video Multi-
media Producer, February:14, 16, 2003.

S.Z. Guyer and C. Lin. An annotation language for optimizing software
libraries. ACM SIGPLAN Notices, 35(1):39-52, Jan. 2000.

D. Heller. A survey of parallel algorithms in numerical linear algebra.
SIAM Review, 20:740-777, 1978.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 1996.

P. Hochmuth. Gushing over linux. NetworkWorld, 4(7):46, 2003.

R. Hockney and C. Jesshope. Parallel Computers: Architecture, Pro-
gramming and Algorithms. Adam Hilger Ltd., Bristol, 1981.

E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis,
P. N. Papachiou, M. K. Samartizs, E. A. Vavalis, K. Y. Wang, and
S. Weerawarana. ELLPACK: A numerical simulation programming
environment for parallel MIMD machines. In Proceedings 1990 Inter-
national Conference on Supercomputing, ACM SIGARCH Computer
Architecture News, pages 96107, Sept. 1990. Published as Proceedings
1990 International Conference on Supercomputing, ACM SIGARCH
Computer Architecture News, volume 18, number 3.

C. F. Jr. Grid-dy determination. NetworkWorld, June 1:43, 46.

C. Koelbel, D. Loveman, R. Schreiber, G. S. Jr, and M. Zosel. The
High Perhormance Fortran Handbook. MIT Press, 1994.

D. Kuck. Structure of Computers and Computations. Wiley, New York,
1978.

S. Lakshmivarahan and S. K. Dhall. Analysis and Design of Parallel
Algorithms: Algebra and Matriz Problems. McGraw-Hill, New York,
1990. $44.

93

[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Soft., 5:308-329,
1979.

C. D. Marsan. Grid vendors target corporate applications. Network-
World, January 27:26, 2003.

M. Metcalf and J. Reid. Fortran 90/95 Ezplained. Oxford University
Press, 1999.

J. Modi. Parallel Algorithms and Matriz Computation. Oxford Uni-
versity Press, Oxford, 1988.

M. Musgrove. Computers’ shelf life gets livelier. Washington Post,
December, 10:E01, 2002.

J. Ortega and R. Voight. Solution of Partial Differental Equations on
Vector and Parallel Computers. STAM, Philadelphia, 1985.

P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, San
Frncisco, 1996.

M. Paprzycki. Parallel matrix multiplication - can we learn anything
new? CHPC Newsletter, 7(4):55-59, 1992.

M. Paprzycki and C. Cyphers. Gaussian elimination on cray y-mp.
CHPC Newsletter, 6(6):77-82, 1991.

M. Paprzycki and C. Cyphers. Multiplying matrices on the cray -
practical considerations. CHPC Newsletter, 6(4):43-47, 1991.

M. Paprzycki, H. Hope, and S. Petrova. Parallel performance of a
direct elliptic solver. In M. Griebel et al., editors, Large Scale Scientific
Computations of Engineering and Environmental Problems, pages 310—
318, 1998.

M. Paprzycki, I. Lirkov, and S. Margenov. Parallel solution of 2d
elliptic pde’s on silicon graphics supercomputers. In Y. Pan et al., edi-
tors, Proceedings of the 10th International Conference on Parallel and
Distributed Computing and Systems, pages 575-580. IASTED /ACTA
Press, 1998.

M. Paprzycki, I. Lirkov, S. Margenov, and R. Owens. A shared
memory parallel implementation of block-circulant preconditioners. In

o4

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

93]

M. Griebel et al., editors, Large Scale Scientific Computations of En-
gineering and Environmental Problems, pages 319-327, 1998.

M. Paprzycki and P. Stpiczynski. Parallel solution of linear recurrence
systems. Z. Angew. Math. Mech., 76(S52):5-8, 1996.

M. Paprzycki and J. Zalewski. Parallel computing in Ada: An overview
and critique. Ada Letters, 17:62-67, 1997.

J. S. Plank, H. Casanova, M. Beck, and J. J. Dongarra. Deploying
fault-tolerance and task migration with NetSolve. Future Generation
Computer Systems, 15(5-6):745-755, Oct. 1999.

S. F. Reddaway, G. Bowgen, and S. V. D. Berghe. High performance
linear algebra on the AMT DAP 510. In G. Rodrigue, editor, Pro-
ceedings of the 3rd Conference on Parallel Processing for Scientific
Computing, pages 45-49, Philadelphia, PA, USA, Dec. 1989. STAM
Publishers.

K. Regan. Unsold gateway PCs to serve as on-demand grid network.
http://www.techextreme.com/perl/story/20230.html.

J. R. Rice. Ellpack 77 user’s guide. Technical Report CSD-TR 226,
Purdue University, West Lafayette, IN, 1978.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler. Matriz Figensystem Routines : EISPACK

Guide, volume 6 of Lecture Notes in Computer Science. Springer-
Verlag, 1976.

P. Stpiczynski. A new message passing algorithm for solving linear
recurrence systems. Lecture Notes in Computer Science, 2328:466-473,
2002.

P. Stpiczyniski and M. Paprzycki. Fully vectorized solver for linear
recurrence systems with constant coefficients. In Proceedings of VEC-
PAR 2000 - jth International Meeting on Vector and Parallel Pro-
cessing, Porto, June 2000, pages 541-551. Facultade de Engerharia do
Universidade do Porto, 2000.

D. K. Taft. Ibm bolsters grid computing line. eWeek, February 3:24,
2003.

95

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM,
Philadelphia, 1997.

R. A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package.
Scientific and Engineering Computing. MIT Press, Cambridge, MA,
1997.

R. A. van de Geijn and J. Overfelt. Advanced linear algebra object
manipulation. In R. A. van de Geijn, editor, Using PLAPACK: Parallel
Linear Algebra Package, Scientific and Engineering Computing, pages
42-57. MIT Press, Cambridge, MA, 1997. Chap. 3.

C. Van Loan. Computational Frameworks for the Fast Fourier Trans-
form. STAM, Philadelphia, 1992.

R. C. Whaley. LAPACK working note 73: Basic linear communication
algebra subprograms: Analysis and implementation across multiple
parallel architectures. http://www.netlib.org/blacs, June 1994.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing,
27:3-35, 2001.

M. Wolfe. High Performance Compilers for Parallel Computing.
Addison—Wesley, 1996.

H. Zima. Supercompilers for Parallel and Vector Computers. ACM
Press, 1990.

7. Zlatev, J. Wasniewski, and K. Schaumburg. Y12M solution of large
and sparse systems of linear algebraic equations: documentation of sub-

routines, volume 121 of Lecture Notes in Computer Science. Springer-
Verlag Inc., New York, NY, USA, 1981.

o6

