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IMPROVED QUASI-STEADY-STATE-APPROXIMATION METHODS
FOR ATMOSPHERIC CHEMISTRY INTEGRATION*
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Abstract. In the last fifteen years the quasi-steady-state-approximation (QSSA) method has
been a commonly used method for integrating stiff ordinary differential equations arising from atmo-
spheric chemistry problems. In this paper a theoretical analysis of the QSSA method is developed,
stressing its strengths and its weaknesses. This theory leads to practical improvements to the QSSA
method. New algorithms, including symmetric and extrapolated QSSA are presented.
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1. Introduction. As our scientific understanding of atmospheric chemistry and
dynamics has expanded in recent years, so has our ability to construct comprehensive
models which describe the relevant processes. (Carmichael, Peters, and Kitada [5],
Jacob et al. [18], and Dentener and Crutzen [7] are examples of regional and global
scale atmospheric chemistry models in use today.) However, these comprehensive
atmospheric chemistry models are computationally intensive because the governing
equations are nonlinear, highly coupled, and stiff. As with other computationally
intensive problems, the ability to fully utilize these models remains severely limited
by today’s computer technology.

The large computational requirements in the study of chemically perturbed envi-
ronments arise from the complexity of the chemistry of the atmosphere. Integration
of the chemistry rate equations typically consumes as much as 90 percent of the total
CPU time! Obviously, more efficient integration schemes for the chemistry solvers
would result in immediate benefits through the reduction of CPU time necessary for
each simulation. As more and more chemical species and reactions are added to
the chemical scheme for valid scientific reasons the need for faster yet more accurate
chemical integrators becomes even more critical.

Efficient chemistry integration algorithms for atmospheric chemistry have been
obtained by carefully exploiting the particular properties of the model. One of the
commonly used methods is the QSSA method of Hesstvedt, Hov, and Isaacsen [16].
The performance of the QSSA scheme can be further improved by using the lumping
technique which leads to mass conservation of groups of species. Practical QSSA per-
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formance is discussed in the instructive paper [26], by Shieh, Chang, and Carmichael,
where different integrators are compared on specific atmospheric chemistry problems.
An evaluation of the local truncation error of the QSSA scheme can be found in [30].

There are many specially tailored methods in use in atmospheric chemistry mod-
els. One of the first proposed methods, and one which has been extensively used,
is the hybrid predictor-corrector algorithm of Young and Boris [33]. Species are di-
vided into stiff and nonstiff; the explicit Euler method (predictor) and an explicit
trapezoidal method (corrector) are used for the nonstiff part, while the stiff part is
integrated with a modified midpoint scheme.

Sillman in [27] developed an integration scheme based on the implicit Euler for-
mula. Following a careful analysis of sources and sinks of odd hydrogen radicals in the
troposphere, the author reorders the vector of species such that the resulting Jacobian
is nearly lower block triangular; this enables an elegant “decoupling” between short-
lived species (integrated implicitly) and long-lived species (integrated semi-implicitly).
The scheme is efficient but difficult to generalize.

Hertel, Berkowicz, Christensen, and Hov [15] proposed an algorithm based on
the implicit Euler method. Using only linear operators it preserves the total mass.
The nonlinear system is solved using functional iterations. The main idea is to speed
up these iterations using explicit solutions for several groups of species. The method
seems to work fine for very large step-sizes.

A particularly clear approach was taken by Gong and Cho [11]. They divide the
species into slow and fast, according to their lifetimes. The slow species are estimated
using an explicit Euler scheme; the implicit ones are integrated with the implicit Euler
scheme (and Newton—Raphson iterations for solving the nonlinear system). As a last
step, the slow species are “corrected,” reiterating the explicit Euler step.

A fancy projection/forward differencing method was proposed by Elliot, Turco,
and Jacobson [9]. The species are grouped together in families. The distribution of
the constituents inside a family is recalculated before each integration step using an
implicit relation and solving the corresponding nonlinear system. (This “projection”
can be viewed as a “predictor.”) Then the integration is carried out for families using
a significantly improved time step.

Dabdub and Seinfeld in [6] investigated an extrapolation algorithm whose under-
lying numerical scheme is based on a QSSA predictor and on a hybrid corrector (with
a trapezoidal method for nonstiff components and a modified QSSA formula for the
stiff components). The authors report good results; however, a theoretical analysis of
the method is not presented.

Verwer [29] proposed an extension of QSSA to a second-order consistent scheme
and also a “two-step method” which is the second-order backward differential formula
(BDF) plus Gauss—Seidel iterations for solving the nonlinear system. (According to
the author, these iterations perform similarly to the modified Newton method but
with less overhead.) The two-step method enables very large step-sizes.

A different approach was taken in [19] by Jacobson and Turco. The 3-D calcu-
lations are vectorized around the grid-cell dimension (a very interesting idea) and
advantage is taken of the sparse structure of Jacobians and a specific reordering of
species (that makes Jacobians close to lower triangular form).

In this paper we look in detail at the widely used QSSA method and demon-
strate that significant improvements in the efficiency of this type of method can be
achieved. We consider two extrapolation algorithms based on QSSA. In particular
we obtain an order-2 method that uses two function evaluations per step which we
call the extrapolated QSSA method. We also construct a nontrivial modification of
the well-known GBS (Gragg—Bulirsch—Stoer) extrapolation algorithm based on an ap-
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propriate QSSA modification. In particular we obtain an order-2 method that uses
three function evaluations per step which we call (for good reason) the symmetric
@SSA method. In the stiff case the extrapolated methods no longer have a higher
order than the plain QSSA method does. Nevertheless, we prove that the extrapolated
@SSA method and the symmetric QSSA method have a smaller error constant, which
explains their superior performance. We also prove that under certain conditions the
plain QSSA method is convergent when applied to a particular singular perturbation
problem. Numerical experiments on a test problem used in a regional scale model are
also presented.

2. Plain, DAE, and iterated QSSA. If y € R" denotes the vector of con-
centrations, the differential equations arising from the chemical mass balance relation
can be written in the form

dy,
(1) pr

where P;(y) and D,(y)y; are production and destruction terms, respectively. These
equations have an exponential analytical solution provided that P;(y) and D;(y) are
constant. For an initial value y(tg) = yo and a step-size h the approximation

Pi(yo) (Pj(yo)
Dj(yo)  \Dj(yo)
forms the basis of the QSSA method. For species with a very long lifetime 7, = 1/D;;,
i.e., with very small D, this equation can be simplified by replacing the exponential
term with 1 — hD;(yo), thus obtaining the explicit Euler formula

(3) y;(to +h) = yo,; + b (Pj(yo) — Dj(y0)yo,;) -

For species with a very short lifetime, i.e., with very large positive D;, the following
steady-state relation is obtained:

:P](yhayn)_D](yl)ayn)yj forj:l,...,n,

(2) y;(to +h) = - yo,j) e MPiwo) = g (ty + h)

Pj(y(to + h))
Dj(y(to +h))

For short-lived species these equalities form a system of nonlinear equations which is
usually solved by a fixed-point iteration scheme. This is in fact equivalent to solving
the system of differential-algebraic equations (DAE) obtained by replacing in (1)
the differential equations corresponding to short-lived species by their corresponding
steady-state equations

(4) yj(to +h) ~

dy, .
) Ui Pyyrse ) = Dyl )y JET

OZPi(yla'~'7yn)7Di(y17-"ayn)yi7 Z€I7

where 7 is the set of indices corresponding to the short-lived species and the set J
consists of the remaining indices. We call the scheme based on (2)—(3)—(4) the DAE
QSSA method. This is clearly distinct from the method consisting of applying (2) to
all species which will be called the plain SSA method or simply the QSSA method.
We note that the DAFE QSSA method described in this paper is usually known in the
literature as the QSSA method and has been extensively used in solving atmospheric
chemistry equations.
Consider now the plain QSSA scheme. By construction we have

y(to) = yo = y(to) , y'(to) = P(yo) — D(yo)yo = v'(to)-
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A simple analysis for the second derivatives at £, gives
§"(to) = =D(y0)¥'(to) = — D(yo)(P(y0) — D(yo)yo) ,
y" (to) = Py(y0)y'(to) — Dy (o) (¥ (to), y(to)) — D(yo)y' (to)
= (Py(y0) — D(yo)) (P(y0) — D(yo)yo) — Dy(yo)(P(y0) — D(y0)yo, Yo)

showing that §”(tg) # y”(to) in general. Thus the order of plain QSSA is equal to
one.

In an attempt to improve plain QSSA, the chemists working on atmospheric
models have developed the iterated @SSA method. The formula (2) is reapplied with
P; and D; recomputed at the point y; := y(to + h), giving,

Pi(y1) <Pj(y1) e ) Co=hD; ().
Dj(y1) \Dj(y)
The work per step is approximately doubled, as compared to plain QSSA. Numerical

experiments have shown that iterated QSSA performs better than plain QSSA (in
terms of precision/work ratio) only for large tolerances.

(6) ¥j(to + h) =

3. Extrapolation algorithms based on QSSA. A natural way to build new
methods based on QSSA in the hope of better efficiency is to consider extrapolation
algorithms. Some extrapolation methods have proved to be successful for very stiff
problems arising in chemistry, e.g., extrapolation based on the linearly implicit Euler
method or on the linearly implicit midpoint rule, see [2, 8] and [14, Section IV.9].
Therefore, extrapolation cannot be a priori discarded as a viable technique for solv-
ing the stiff systems arising in atmospheric chemistry. In general for high accuracy
requirements extrapolation to high order is used, but here we are mainly interested
in low-order extrapolation since the accuracy requirements in atmospheric chemistry
are low. In this paper we will consider two extrapolation algorithms based on QSSA.
Extrapolation is based on the existence of an asymptotic expansion in h-powers for
the global error. In the presence of stiffness such an expansion does not hold in gen-
eral, however. Nevertheless, extrapolation may already lead to a certain improvement
just by reducing the error constants.

From the nonstiff situation the extrapolation algorithm based on QSSA is defined
as follows. Considering a step-size H and a sequence of positive integers n; < ng <
ns < ..., we perform n; times the QSSA formula (2) with step-size h; = H/n;, and
denote the result by Tj;. We then extrapolate these values via the recursion

Ti —Tj—1,%
(nj/nj-r) —1
The extrapolated values T, are approximations of order k to the exact solution
y(t + H) in the nonstiff situation.
Another type of extrapolation algorithm makes use of asymptotic expansions in

even powers of h. The following algorithm is similar to the well-known GBS algorithm
[13, Formula I1.9.13] but it is based on QSSA. We compute

(8a) y1 = e PO (yy — D(yo) T P(y0)) + D(yo) " Pwo),

(7 Tjkvr =T +

(8b) Yis1 = e W (. — D(y) T P(yi)) + Dlyi) T P(yi)

fori=1,...,2n—1
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and then perform the following step:

(80) Sh(tn) - eiD(yzn)h (yZn—l - D(an)ilp(an)) + D(an)ilp(an)a

where t, = to + 2nh. The extrapolation algorithm is slightly different. Here, con-
sidering a step-size H and a sequence of positive integers ny < ng < nz < ..., we
perform the algorithm (8a)—(8c) with step-size h; = H/(2n;) and denote the result
by Tj1 := Sp, (tn). We then extrapolate these values with the recursion

Tik —Tj—1.k
(nj/nj,k)Q -1

The extrapolated values T}, are approximations of order 2k to the exact solution in
the nonstiff situation.

In the next two sections we analyze what may happen with stiffness by considering
a singular perturbation problem and its related reduced system.

9) Tjpyr =Tk +

4. The reduced system of a singular perturbation problem. Since the
differential equations (1) modeling chemical reactions are generally stiff, the well-
known phenomenon of order reduction may occur for the integration method [22].
As a simplified model problem for the forthcoming analysis we consider the following
singular perturbation problem:

(10a) Yy =— Di(y,2)y+ Pi(y,2) ,

(10b) J = (iDz(y, 2) + Ds(y, z)) ot (iPQ(y, 2) + Po(y, z)>

with 0 < ¢ <« 1 and Ds(y, z) supposed to be a diagonal matrix strictly positive definite
in a neighborhood of the solution. The above division into two classes of species is
rather restrictive, but it will give certain insights into the behavior of the different
algorithms based on QSSA in the presence of stiffness.

The equations (10a)—(10b) can be rewritten as

(11) y/ = Dl(yvz)(*y + Cl(yvz)) ’
7= D4(y,z)(—z + 04(2/72)) )

where
Ci(y:2) = Da(.2) " Pily.2) . Daly2) = ~Dal2) + Dalys2)
Pily2) = LPa(,2) 4 Po(y2), Calyr2) = Dalw,2) " Paly,2)
Multiplying the equation (10b) by € and letting ¢ — 0 we obtain the reduced system

(12a) ¢ =— Di(y,2)y+ Pi(y,z) = Di(y,2)(—y+ Ci(y,2)) =: f(y,2) ,
(12b) 0=~ Da(y,2)z + P2(y,2) = Da(y,2)(—z + Ca(y,2)) =: g(y,2) .

We assume that

(13) g-(y, z) is invertible
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in a neighborhood of the solution which implies that the differential-algebraic system
(12a)—(12b) has index one (cf. [14]). This assumption is actually quite natural for
species with very short life-times (see (5)). In order to prove the convergence of the
QSSA algorithms we will need the stability assumption

(14)  Ca(y,2) = Da(y,2) ' Pa(y, 2) is a contraction in z for the norm | - ||

to be satisfied in a neighborhood of the solution. We denote the related contractivity
constant by p. We will see in Theorem 5.1 that (14) implies (13).

Let us apply the QSSA method to the stiff equations (10a)—(10b). Since Ds(y, 2)
is a diagonal matrix with strictly positive coefficients we can take the limit ¢ — 0 and
we obtain

(15a) yy = e~ Doz (y O (yo, 20)) + C1 (0, 20),

(15b) Z1 = 02(y0720).

This is the definition of the direct approach of the QSSA method applied to the reduced
problem (12a)—(12b). It will help us later on in Section 5 for the convergence analysis
of the QSSA method applied to the singular perturbation problem (10a)—(10b).

Now we restrict our analysis to the differential-algebraic system (12a)—(12b) of
index one and the method (15a)—(15b). Differentiating the algebraic equation (12b)
with respect to ¢ and omitting the function arguments we obtain

2= (I —Co,) 'CoyDi(—y+ Ch).

By expanding into Taylor series the exact and the numerical solutions, it can be seen
that the local error dyp, (to) := y1 —y(to+h) and 6z, (to) := 21 — 2(to + h) of the QSSA
method (15a)—(15b) is given by

(16 ounlto) = = (D1, (Dialv0-+ Cio). =0 + Cio)

+ D19C1ygD1o(—y0 + Co)

+ Di2o(—yo + Cio, 29) + D19C1z929) + O(h?),
(16b) 521 (to) = — hz) + O(h?),

where the subscript 0 indicates that the function arguments are the initial values
(Y0, 20). We have given the complete expression of the first term of the error because
we will make a comparison with some other methods later on. It must be noticed that
even if Cy,(y,2) = 0 the local error remains 6y, (to) = O(h?) and 6z (ty) = O(h). In
the following theorem we give a perturbed asymptotic expansion of the global error
for a constant step-size application of the method (15a)—(15b).

THEOREM 4.1. Consider the index one system (12a)—(12b) with consistent initial
values (yo,z0) and suppose that (14) is satisfied in a neighborhood of the solution.
Then the global error of the QSSA method (15a)—(15b) at t; = tg + ih satisfies for
ih < H,

yi — y(t;) = hay (t;) + h2(az(t;) + aF) + O(h®),

zi = 2(ti) = h(bi(t:) + 5}) + O(h?) .
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The error terms are uniformly bounded for H sufficiently small. The functions a;(t),
as(t), and by (t) are smooth. The perturbations o2, 3} are independent of h and they do
not vanish in general. At to we have ay(ty) = 0, az(to) +ad =0 and by (to) + 35 = 0.

Proof. To start the proof, we first show convergence of order-1 for the QSSA
method (direct approach). It is worth noting that this part of the proof remains valid
for variable step-sizes with h = max; |h;|. We use standard techniques (see, e.g., [12,
Theorem 4.4] and [14, Theorem VI.7.5]). We denote two neighboring QSSA solutions
by {Un,Zn}, {Un,2n} and their difference by Ay, = Un — Yn, Azn = Zn — Zn. We
suppose for the moment that

(A7) 1n — y(ta)ll < Coh, |20 — 2(ta)ll < Cih, [|Aynll < Coh?, [|[Azy]| < Csh.

This will be justified by induction below. For the QSSA method (15a)—(15b) we have
the inequalities

(18a) [AYnt1ll < [ Aynll + O] Ayn | + Al Aznl]),
(18) 182011l < - 1Az + Ol Agall + Al Az, )
with 0 < p < 1. Applying [14, Lemma VI.2.9] we get

[1Ayn |l < Ca (| Ayoll + Rl Az0]])

Az || < Cs ([[Ayoll + (b + p") - [Azol]) -

If (y%, 2%) with k < n denotes the QSSA solution starting on the exact solution at t,
then the previous formula and (16a)-(16b) imply

I — Yk < Ca ([16yn (tr) | + hll6zn (t)]) < Coh?,
Iz = 2 < Cs (Iyn(ti)ll + (A + p" 5 71) - (|82 (t) ) < Crh® + Csp™*h.
Summing up we obtain

Cin
L—p

n—1 n—1
Sollyk —yEt < Cohy D l2k — 2 < Croh + h < Cizh.
k=0 k=0

Since the constants Cg, C7, Cg, Cy, and C5 do not depend on the constants Cy, Cy, Cs,
and C3, the assumption (17) is justified by induction on n provided the constants
Cy, C1, Cs, and C5 are chosen sufficiently large and h sufficiently small.

In the second part of our proof we assume that the step-size h is constant. As
in [14, Theorem VI1.4.3] we are looking for a perturbed asymptotic expansion of the
global error of the form

yi —y(t:) = W (a;(t;) +al) + O(RNT),

-

<
Il
-

B (b;(t:) + B]) + O(hNTT)

M=

Z; — Z(tz) =

.
Il
_

with smooth functions a;(¢), b;(t), and perturbations ozg, ﬂg satisfying a;(to) +ag =0,
bj(to) + ﬁ(j) =0, and

(19) al =0 for i— oo.
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For this purpose we construct recursively truncated expansions

M
i =y(t) + > B (aj(t) + af) + MM
j=1

M
Zi=2(t) + > b (bi(ts) + ),
j=1

such that when inserted into (15a)—(15b) we have
Jiv1 = e D12 (G (5i, %) + O35, %) + O (KM*2)
Zix1 = Co(§i, %) + O (RMT1)

We first develop the above expressions into Taylor series at ¢; to obtain conditions
for the smooth functions. We then develop the terms involved with the perturbations
at ty to obtain conditions for the perturbations independently of h. Each power of h
leads to two types of conditions, one for the smooth functions a;(t), b;(t) and the other
for the perturbations a{ , @J . After some tedious computations we have the following
results. For M = 0 we simply obtain the condition o} 1= a} for the perturbations.
Therefore by the hypothesis (19) we must necessarily have o} = 0 for all i > 0. For
i = 0 it implies that ay(tp) = 0. For M = 1 the smooth functions a;(t) and by (t)
must satisfy

(20a) 0 = Da.(t) (2(t), br () + Da(t) (2' (1) + ba(1))
— P (t)b1(t) + Day (1) (2(t), a1 (t)) — Pay(t)as (1),

1

(20b) ay(t) = — 53/"(75) — Dy(t)ai(t) — D1y (t) (y(t), a1(t))

— D1, (t) (y(t),b1(t)) + Py (t)ar(t) + P (t)bi(t)

D0 (=Di(D)y(t) + PA(1)
We have used the notation Dq(t) := Dy (y(¢), 2(¢)), etc. We can compute by (t) from
(20a) because of the invertibility of the matrix ¢, (t) = —Da, (t)(2(t), -)— D2 (t)+Ps (t).
We then insert its expression into (20b), leading to a linear differential equation for
a1 (t) with initial condition aq(tp) = 0. Therefore aq(t) and bi(¢) are determined
uniquely from the two above equations. Putting ¢ = to in (20a), we have b1 () # 0 in
general, implying that 3} # 0. For the perturbations 3! and a? we get the recurrences

/811-5-1 = D?(tO)il (PZZ(tO)ﬂzl - D2z(t0) (Z(tO)aﬂzl)) )

afy =af + Pi,(to)B}! — Di.(to) (y(to). B}) .

Therefore, in general 8} # 0 and a? # 0 for all . The remainder can be estimated as
in part d of the proof of [14, Theorem VI.4.3]. We obtain recurrence relations similar
to (18a)—(18b). o

The process of determining the perturbed asymptotic expansion may be continued
if the perturbations are exponentially decaying to zero. For j > 2, a;(t) and b;(t) are
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computed similarly to a;(t) and by (t), and we obtain other very intricate recurrence
relations for af“ and (7. In fact it is not worthwhile to continue this process,
because here the aim of computing a perturbed asymptotic expansion is to see if the
extrapolated values could be of higher order than one. Unfortunately, this cannot
happen since only the smooth function terms aq(t), as(t), and by (¢) are eliminated
by extrapolation, not the perturbation terms 3! # 0 and a? # 0. Thus Theorem 4.1
shows that the order of the standard extrapolation (7) of QSSA remains equal to one
for all extrapolated values and this is a negative result. We can therefore expect that
in the stiff situation the standard extrapolation of the QSSA values will generally not
improve the order of the plain QSSA. This result was confirmed numerically. Although
the order remains equal to one when doing extrapolation, the error constants are
actually smaller and this can imply a certain improvement in efficiency for the first
values of the extrapolation tableau.

We call the element Tho of the extrapolation tableau (7) with n; =1 and ny = 2
the extrapolated QSSA method. Applied with a step-size H = 2h this method can be
expressed as a multistage method as follows:

Vi =yo+ (e P — 1)(yo — C(yo)),

Yy =yo + (e7PW — 1)(yo — C(y0)),

Yy =Ya + (7 PO — 1) (Y, - O(Y2)),
(21) y1=2Y3 — Y1,

and it necessitates only two function evaluations. It is an order-2 method in the
nonstiff case. We analyze what happens to this method when applied to the reduced
system (12a)—(12b). We get for the direct approach

Vi =yo+ (e P12k _ 1) (yy — Ci(yo, 20)),  Z1 = Ca(yo,20),
Yy = yo + (e P10 — 1)(yo — Ci(yo, 20)), Zy = Ca(yo, 20),
Yy =Yi+ (e 022 )Yy — C1(Ya, Z2)),  Zs = Ca(Ya, Za),
y1 = 2Y3 -1, 21 = 243 — 4.

Using Taylor series to compute the local error of this method, we arrive at

H2
oyu(to) = *7(D1zo (=yo + C1o, (I — 0220)71023;01710(*3/0 + C1y))

+ Dloclzo(l - OQZO)ilchODlo(_yO + 010)) + O(H3)7
(SZH(t()) = H(I — (I — szo)il)CQyODlo(—yo + 010) + O(H2)

We clearly see that the local error of this method contains fewer terms than the
error (16a)—(16b) of plain QSSA. We observe that if Co,(y,z) = 0 the local error
of the extrapolated QSSA method is Sy (to) = O(H?) and 62y (tg) = O(H?). For
this method, using a convergence proof similar to that given in Theorem 4.1 for plain
@SSA, we obtain convergence of order-1 for the y- and z-components but with a
smaller error constant.
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A similar analysis for the GBS-type algorithm (8a)—(8c) would be very intricate,
but it has been observed numerically that there is no significant improvement when
the extrapolation algorithm is used. Nevertheless, the first element of the extrapola-
tion tableau with ny; = 2 gives good results. Applied with a step-size H = 2h this
multistage method reads

Vi = yo + (e PO —1)(yo — C(w0)),
Yo = yo + (e POV _ 1) (yo — C(11)),
Ys =Y, + (e PR _1)(v; — C(Y2)),

(22) Yy = Y3,

and it necessitates three function evaluations. We call this method the symmetric
QSSA method. It is an order-2 method in the nonstiff case. We analyze what happens
to this method when applied to the reduced system (12a)—(12b). We get for the direct
approach

Y1 = yo + (e” 1w 1) (yo — Ci(yo, 20)), Zy = Ca(yo, 20),
Yy = yo + (e” D1 Z02h 1) (yy — C1 (Y1, Z1)), Zy = Ca(Y1, Z1),
Yy =Y+ (e P12 1) (Vy - C1(Ya, Z2)), Zy = C2(Y2, 2o),

y1 = Y3, 21 = Z3.

Using Taylor series to compute the local error of this method, we arrive at

H? 1
Sy (to) = o5 <D1z0 (—yo + Cho, (21 - - C2z0>_1) CayoD10(—vo + Clo))

1

+ D1¢C12g <21 - - szo)1> CayoD1o(=yo + Cm))

+ O(H?),
1
Seaa(to) = H I+ 5Cazg = (1 = Cazg) ™) Cagg Dol -+ Cao) + O,

We clearly see that the local error of this method contains fewer terms than the er-
ror (16a)—(16b) of plain QSSA. It is also clear here that the extrapolation algorithm
(9) cannot increase the order because the error of the first element of the extrapo-
lation tableau does not have an asymptotic expansion in even powers of H. In fact
any explicit method of QSSA type cannot be of order greater than one for the re-
duced system (12a)—(12b) because of the presence of the expression (I — Cy,)~! in
the first derivative of the exact solution for the z-component. We observe that if
Cs,(y,2z) = 0 the local error of the symmetric QSSA method is Syu(tg) = O(H?)
and 62y (tg) = O(H?). For this method, using a convergence proof similar to that
given in Theorem 4.1 for plain QSSA, we obtain convergence of order-1 for the y- and
z-components but with a smaller error constant.
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5. Convergence of QSSA for the singular perturbation problem. In this
section we give a proof of convergence under certain conditions of the plain QSSA
method when applied to the singularly perturbation problem (10a)—(10b).

Because we are mainly interested in smooth solutions to (10a)—(10b) (see [14,
Section VI.2]) we require as a stability assumption that the logarithmic norm of
9:(y, z) satisfies [14, Formula VI.2.11]

(23) 1(9=(y,2)) <0

in an e-independent neighborhood of the solution. By definition, the logarithmic norm
of a matrix A is given by

. I +hA|| -1
24 M=
where I is the identity matrix.

In the following theorem we show that the stability assumptions (14) and (23)
may be related for the matrix norm induced by the max-norm ||z|lcc = max?_; |2;].
For other norms some counterexamples below demonstrate that the two assumptions
are unrelated.

THEOREM 5.1. In a neighborhood of the solution

1. if Ca(y, 2) is a contraction in z for the norm || - ||, then g.(y, z) is invertible;

2. if in addition Ds(y, z) is diagonal and strictly positive definite, and the in-
duced matriz norm of any diagonal matriz D = diag(di1,...,dny) satisfies ||D| =
maxl_, |d;i|, then the real parts of the eigenvalues of g,(y, z) are strictly negative;

3. moreover, if Co(y,z) is a contraction in z for the maz-norm, then for the
induced logarithmic norm we have

foo(92(y,2)) <O .

Conversely

4. if u(g.(y,2)) < 0, then the real parts of the eigenvalues of g.(y, z) are strictly
negative and g.(y, z) is therefore invertible;

5. if too(9:(y,2)) < 0, Da(y,z) is diagonal and strictly positive definite, and
the diagonal elements of Ca,(y,z) are nonnegative, then Ca(y, z) is a contraction in
z for the maz-norm.

Proof. For part 1 we rewrite

g(ya Z) = D2(y7 Z) (_Z + CQ(ya Z)) .
Differentiating this expression with respect to z leads to
9:(y,2) = D2, (y, 2) (=2 + Ca(y, 2)) + D2(y, 2) (=1 + C2(y, 2)) -

Since ¢(yo,20) = 0 and D (yo, o) is invertible we have —zg + Ca(yo, 20) = 0. Hence
we get

9:(Y0, 20) = D2(yo, 20) (—I + C2.(yo, 20)) -

Because C5(y, z) is a contraction in z with constant p for the given norm || - || we have
equivalently for the induced matrix norm

(25> HCQZ(y7Z)H <p< 1.
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Since D5 (y, z) is invertible, this completes the proof of the first part of the theorem.

For part 2 we suppose by contradiction that there exists an eigenvalue A of g, (y, 2)
with a nonnegative real part. We denote by v # 0 a corresponding eigenvector.
We will show that v = 0, giving the desired contradiction. We use the notation
D := Ds(yo,20) and C := Cs,(yo, 20). We have D(C — I)v = \v which implies that
(I +AD~! — C)v = 0. We thus obtain

(I+AD )T - (I+AD"H) ' C=0.

The matrix [+AD ™! is clearly invertible. The matrix I —(/+AD~!)~1C is invertible,
too, because of the estimate

[T+~ < [T+~ -l < p<p<lL

‘1 + /\/ max?zl d”‘
We thus arrive at the contradiction v = 0.

For part 3, the logarithmic norm associated with the max-norm of a matrix A is
given by [13, Formula 1.10.20’]

n
oo (A) = Max | @i + g |aij]
J 1

For the matrix C' — I we get

7 — 4 S » < ma » 1 = _ )
foo(C =) Ifl:alx Cii 1+§|Cw| > I?:alx Zjl‘cm 1=|Clle—1<0
J#i j=

For the matrix D(C — I) we thus have the estimate

n
foo (D(C = 1)) = m%g dii | cii =14+ eyl | | < min di; - fioo (€' = 1) < 0.
. i .

Conversely, for part 4, if a matrix A satisfies u(A) < a then the real part of the
eigenvalues of A are strictly smaller than «. This result is a simple consequence of
the definition of the logarithmic norm (24). We suppose by contradiction that there
exists an eigenvalue A of A satisfying Re(\) > « with a corresponding eigenvector v
of unit norm. We have for h > 0 sufficiently small

1 Al -1 1 -1_1 -1
I( +hh)v\| :|+hh)\| . +hRZ()\) R > e,

implying that p(A) > « and giving the desired contradiction.
Finally for the last part, we have by hypothesis that

Moo (D(C—I))zm%x di; Cii_1+Z|cij| < 0.
=1
J#i
Since d;; and c¢;; are supposed to be positive we obtain

Z|Cij| —1 <0 for all 4.

J=1
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Thus we get
ICloo = Ifl:alx z:l lei| | < 1. 0
j=

Here is a counterexample which shows that (14) does not imply (23) in general. We

take
0.92 01 0
C 5 - 5 D 3 = .
2(0,2) ( 0.92 ) 2(92) ( 0 10 )

Although Cs(y, 2) is a contraction for the 1-norm ||z|; = >, |2;| and the Euclidean
norm ||z[2 = (301, |2i|%)/?, for the corresponding induced logarithmic norms (see
[13, Theorem 1.10.5]) we have p1(g.(y, 2)) = 8.9 and p2(g.(y, 2)) = 1.67. However, we
can notice that Ca(y, z) is a contraction for the max-norm and pe(g:(y,2)) = —0.01.
Most common matrix norms satisfy the condition enounced in the part 2 of Theorem
5.1, e.g., for all norms induced by the p-norms ||z||l, = (31, [2(?)Y/? with p > 1.
Here is a counterexample for a norm which cannot satisfy this condition. We take

5.921 — 529 200 O
Caly, 2) = . Dy(y,2) = .
2(y Z) ( 52:1 — 4.122 ) 2(y Z) ( 0 2 >

The spectral radius of Ca,(y, z) is equal to 0.9, hence there exists a norm || - || for
which ||C2.(y, 2)|| < 0.95 say, but an eigenvalue of g,(y, z) is approximately equal to
978.99. A concrete example in R? of a norm whose induced matrix norm does not
satisfy the hypothesis in part 2 of Theorem 5.1 is given by ||z|| = |z2]| + |22 — 21].
There are also counterexamples for the converse part of Theorem 5.1. We choose

222 1 0
CQ(y’Z):< 0 )7 DZ(va):<O 4>~

For the 1-norm and the Euclidean norm we have (9. (y, 2)) = —1 and p2(g:(y, 2)) =
—0.69, but [|Cs,(y,2)|l1 = 2 and ||C2,(y, 2)|l2 = 2; i.e., Ca(y, 2) is not a contraction
for these norms.

We now analyze the behavior of the QSSA method when applied to the singular
perturbation problem (10a)—(10b). We will do an analysis similar to that in [14,
Section VI.2]. We are mainly interested in smooth solutions of the form

(26a) y(t) =y°(t) +ey' (1) + 2% () + ..,
(26b) 2(t) = 2°(t) + ez (t) + 222 (t) + ...

Inserting these expansions into (10a)—(10b), multiplying (10b) by e, and comparing
equal powers of € we get for £°,

!
y" = — Di(y°,2")y° + Pi(y°, 2),

0=— Dg(yo,zo)zo + Pg(yo, 20)7
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for !,

' == Dy (1", 204 y") = Di(W®, 200"+ Pry (v, 2)y" — Di(,2°) (8", 2)
+ Pia(y’, 22,
= = Doy (45, 22"y + Poy (8, 20! = Do (3, 2) (0, 2Y) = Da(y’,2°)"
+ Po.(y’,2%)2 = Da(y°,2°)2" + Pa(y°, 2°),
etc. For the QSSA method
(27a) Ynt1 = Yn +kny ko= (7P = 1)(yn — Cin),
(27b) Znt1 = zn + Un, b, = (e_D4>"'h — 1) (zn, — Can),
we consider similar expansions
(28a) Yn = Yo + ey + 22 + .., kn =Kk + ekl + k2 + ...,
(28b) Zn =20 tezp + 222+ ..., by = €0 +ell + 202 ...

We use the notation Dy, for Di(yn,2n), DY, for Di(y),z)), etc. Ca(y,z) can be
developed in powers of ¢ as follows:

Cy= D5 (146D D3) (P +ePs) = Cy + Dy (—Dy ' D3Py + P3) + O(e?).

THEOREM 5.2.  Consider the singular perturbation problem (10a)—(10b) with
Ds(y, z) diagonal and strictly positive definite, satisfying the assumptions (14) and
(23) for the max-norm, and admitting a smooth solution of the form (26a)—(26b) with
initial values (yo,z0). Then for any fized constant ¢ > 0 the global error of the QSSA
method (27a)—(27b) satisfies for e < ch

uniformly for h < hg and nh < const.
Before giving the proof of this theorem we first need a perturbation lemma.
LEMMA 5.3. Consider the singular perturbation problem (10a)—(10b) with Ds(y, 2)
diagonal and strictly positive definite, satisfying the assumptions (14) and (23) for the
maz-norm and the QSSA method (27a)—(27b). Assume that ||z, —C2(Un, Zn)|lcc < Ah,
10 — Unlloo < Bh, |20 — znlloo < Ch, [|6n]loo < Dh, and ||0,||cc < Eh. Then for any
fized constant ¢ > 0, the perturbed values

(29&) /y\n+1 = e_Dl(ﬂn,72n)h<:’U\n o Cl(@\n; /Z\n» + Oy (/y\n’/z\n) + 6,
(29b) /Z\n—}-l = €7D4(g"’2")h(2n o 04(37”’ En)) + 04@11,371) + gn
satisfy

(30a) 19n+1 = Untilloo < (L+ FR)|[Yn — Ynlloo + GhlIZn — 2nlloo + [[0nlloos

(30b)  Znt1 = 2ntilloe < KUn — Ynlloo + (o + Lh)||Zn — 2znlloo + [|0nlloo
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for e < ch, h < hg, where a < 1. The constants F,G, and K do not depend on the
constants A, B,C, D, and E. The constant L depends on the constants A, B, and C.

Proof. For the y-component the result is obtained by direct estimation. For the
z-component this result is proved by applying the mean value theorem. We consider
the vector-valued function

F(yv Z) = 67D4(y’2)h(z - 04(ya Z)) + C(4(ya Z)

for (y,z) in a O(h)-neighborhood of (yn, z,). Its partial derivatives are
Fy(y.z) = e P10 (“hDyy (y, 2)(2 = Caly, 2)) + T = Cay (y,2)) + Cay (y, 2),

F,(y,2) = e~ Da(y:2)h (=hDy,(y,2)(z — Ca(y,2)) + I — Cy,(y, 2)) + Cu,(y, 2).

We have the estimate || Fy(y, 2)||oc < k independently of the constants A, B, C, D, and

E. In this lemma we consider by hypothesis values satisfying ||z — C2(y, 2)||oc < Ch
where the constant ¢ depends on the constants A, B, and C. We get (omitting the
function arguments)

||FZ||OO S mth + ||e_D4h(I - 022) + C’22“007

where m is independent of the constants A, B,C, D, and E. For h > 0 we have
le™ (I = Coz) + Colloo = mlac | €720 4 (1= e7P0%) B sy

< m%x (e_D““'h +(1- €_D4”h)HC2zHOO>

as a consequence of e~ Piih 4 (1 — e~Puih)p < o < 1 for all 4. ]

We are now in position to give a proof of Theorem 5.2.

Proof of Theorem 5.2. We insert 32 and 2z¥ into the QSSA method (27a)-
(27b). According to Theorem 4.1 the reduced system is convergent of order-1 so that
122 — C2(32, 20) || < Ah. The defects satisfy

0 _0
671 = y2+1 _ yg _ (6D1(yn72’n)h _ 1) (y _ Ol(yn? YL)) — O
977, = 2701+ 04(yn7 707,) - 6D4(yn,zn)h ( - 04 yn7 n )

0
= 22+1 - CZ(ygazroL) - eD4(y",z )h (Z - C'2 yn7 n ) h) )

e., [|0nllc < Eh. Denoting Ay, = y% — y, and Az, = 20 — z,, we assume that

(Yn, 2n) and (y9,29) satisfy

(31) [Aynllc < Bh,  [[Aznloc < Ch;
this will be justified by induction below. We apply Lemma 5.3 to obtain
[AYnt1lloo < (1+ FR)|Aynlloc + Ghl|Aznoo,

Azt 1lloo < K[[AYnlloo + (a + Lh)||Azy |l + Eh,
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where the constants F, G, and K do not depend on the constants A, B, C, and E. The
constant L depends on the constants A, B, and C' but does not vary with n. We can
apply [14, Lemma VI.2.9] to get the desired result. The hypotheses (31) are satisfied
by induction on n provided the constants A, B, and C are chosen sufficiently large
and h is sufficiently small, but independently of €. a

6. Description of the test problem. To test the properties of different nu-
merical methods we have chosen the Carbon Bond Mechanism IV (¢BM-1v) (Gery et
al., [10]), consisting of 32 chemical species involved in 70 thermal and 11 photolytic
reactions. The concentration of H2O is held fixed throughout the simulation. This
mechanism is designed for the numerical simulation of chemical processes in urban
and in regional scale models. For the numerical experiments the chemical mechanism
is run for a simulation time of 5 days. The rate constants and initial conditions fol-
low the IPCC! Chemistry Intercomparison study (see [21]) scenario 3 (“Bio”). An
operator-splitting environment? is simulated with a time step of 20 [minutes| for the
transport scheme. Emission levels of 0.01 [ppb/hour] of NO, 0.01 [ppb/hour] of NOs
and 0.1 [ppb/hour] of isoprene are considered. These emissions are injected in the
system in equal quantities at the beginning of each 20 [minutes] interval.

To describe the stiffness of the problem we have computed both the eigenvalues
A; of the Jacobian and the destruction rates D;. The relation —D; ~ \; allows
us to associate the eigenvalues with the largest negative real parts to certain short-
lived species. For the real part of the spectrum we have found the following values:
—8.11-10% [O(*D)], —8.26 - 10* [O(3P)] —2.47 - 10° [ROR], —3.5 [OH], —4.2 [TOy],
all others being in the interval [-0.14, — 10~%]. The problem is very stiff since time
steps of 1 [nanosecond] are prohibitively small considering an integration interval
of 20 [minutes] and the low accuracy required. For this problem the fact that the
eigenvalues with the largest negative real parts are isolated and can be associated
with certain species indicates that the singular perturbation model (10a)-(10b) makes
sense.

7. Numerical results. In this section the results for the test problem are com-
pared with the solution computed by the code RADAUS of Hairer and Wanner [14]
with very tight tolerances rtol = 1072 and atol = 10719 [molecules/cm3)].

As a measure of the accuracy we have employed the number of accurate digits
(NAD) computed as follows

N
1
NAD = v ; NAD;, NAD; = —log,, (ERR;),

where N is the number of species, ERR; a measure of the relative error in the nu-
merical solution of species i, and N AD; the corresponding number of accurate digits.
With the “exact” solution y(t) (computed by RADAUS) and the numerical solution
y(t) at hand at discrete times {¢t; = to + j - At, 0 < j < M} the measure of the
relative error is computed as follows:

2

vl =9t o< i< M it = a)

yi(t;)

1
ERR; = IZI'Z

j€Ti

ntergovernmental Panel on Climate Change.
2The atmospheric convection—diffusion-reaction equation is solved with the method of fractional
steps [32]; chemistry and transport are considered separately and integrated with different step-sizes.
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The threshold factor used here is a = 1 [molecules/cm?]. If the set J; is empty,
the value of ERR,; is neglected. The purpose of considering the above defined error
measure instead of the root mean square norm (a = 0 [molecules/cm?3)) is to suppress
from the error calculation the values at times when the absolute value of the concen-
tration falls below a = 1 [molecules/em3]; these values are very likely corrupted and
the corresponding large relative errors say nothing about the general computational
accuracy. From a physical standpoint, for atmospheric chemistry applications, values
of a = 1 [molecules/ecm?] or less can be assimilated to a complete extinction of the
species.
In what follows we denote the current step-size by h. The integrators used are
the following:
1. Plain QSSA integrates all the species with formula (2).
2. DAE (QSSA is used with a dynamic partition of the species into slow, fast,
and normal. At each time step we have:
e If 7, > 100 - h the species is slow and is integrated with (3).
e If 7, < 0.1 h the species is fast and is integrated with (4).
e Otherwise, formula (2) is applied.
3. Iterated QSSA is similar to DAE QSSA but has one extra iteration (6).
4. CHEMEQ (see [33], implemented in CALGRID) is used as specified in [25]:
e If 7, < 0.2 h the species is fast and is integrated with (4).
o If 7, > 5 - h the species is slow and is integrated with the nonstiff
CHEMEQ formula.
e For all other species the CHEMEQ stiff formula is used.
5. Extrapolated QSSA (21) uses the difference y; — Y3 = Y3 — Y7 in the error
estimator for the step-size control.
6. Symmetric QSSA (22) uses for the step-size control the difference y; — Yy
where Y} is just one cheap extra QSSA step using the function evaluation at
yo needed for Y7,

Yi=yo+ (e PW2 —1)(yo — Cyo)).

7. TWOSTEP is based on the variable step size, two-step BDF2 [28, 29, 31].
Instead of a modified Newton process, Gauss—Seidel iterations are used for
solving the nonlinear system of equations. This technique carefully exploits
the production-loss form of the differential equation (see [28] for details). We
have used the original implementation obtained directly from the authors.
To accelerate the convergence of the Gauss—Seidel iterations, the species have
been sorted in decreasing order relative to the size of their destruction rates.

8. VODE (a BDF code, see [3, 4]) is similar to LSODE (Livermore Solver for
ODE, see [17]), widely used by atmospheric modelers. VODE is considered
to have several advantages over LSODE when used to integrate systems of
ODE arising from chemical kinetics (see [4]). In order to take full advantage
of the sparsity pattern of the Jacobian, VODE has been modified as described
in [23] by replacing the general factorization and substitution routines dgefa
and dgesl with specialized sparse routines. Results for both the standard
and the modified VODE are presented.

All integrators have been used with a lower bound of 0.01 [seconds] imposed on
the step-size.

The emissions of NO, NOs, and ISOP introduce transient regimes at the be-
ginning of each hourly interval. At these moments, a complete restart is carried
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Fi1Gc. 1. Work-precision diagram for CBM-1V. Plain QSSA (solid with “«”), DAE QSSA (solid
with “z”), iterated QSSA (solid with “0”), CHEMEQ (dashed-dotted with “z”), extrapolated QSSA
(dashed with “x”), symmetric QSSA (dashed with “0”), TWOSTEP (dotted with “x”), VODE (dot-
ted with “0”), and sparse VODE (dotted with “”).

out for all integrators. More exactly, an exit from the integration subroutine is per-
formed, the step-size is reset to its default value of 1 [second], and the subroutine
is called again.® In a 3-D operator-splitting model each two consecutive calls to the
chemical kinetics integrator are separated by a step of the transport scheme, which
may change significantly the concentration values. As a consequence, for compre-
hensive atmospheric models, a periodic restart of the chemical integrator is a neces-
sity.

Figure 1 reports the CPU time versus the NDA for the different integrators.

The efficiency of plain QSSA is improved by treating with DAE QSSA separately
the steady-state species on one hand and the slow species on the other hand. This
conclusion is in agreement with the practical experience of QSSA users.

The extra function evaluation used in iterated QSSA pays back for large values of
rtol; if more accuracy is needed then this strategy is not better than the classic DAE
QSSA approach. Several numerical tests have shown that employing more than one
iteration decreases the efficiency of iterated QQSSA.

VODE uses the highest order formulas among the tested algorithms. This fact
can be observed from the smaller slope in the work-precision diagram of Figure 1.
A high order method pays back when an accurate solution is needed; sparse VODE
is the most efficient for 2.5 or more NAD. In the low accuracy range required by
atmospheric chemistry simulation the off-the-shelf code VODE is not competitive,
since its performance is affected by frequent restarts. This is one of the reasons why
atmospheric scientists have chosen to develop their own integrators rather than using
general solvers. However, if the linear algebra is done such that full advantage of

3Each call to VODE has been done with istate = 1.



200 L. O. JAY, A. SANDU, F. A. POTRA, AND G. R. CARMICHAEL

the structure of the problem is taken (see [23]) the computational time of VODE is
greatly reduced? and the code becomes competitive.

Extrapolated QSSA and symmetric QSSA perform well compared with DAFE QSSA,
iterated QSSA or CHEMEQ (especially when a NAD higher than 1 is required) but
not better than sparse VODE or TWOSTEP. In 3-D atmospheric models, two accu-
rate digits in the solution of chemical kinetics equations is an acceptable value. More
precision is thought to be redundant due to inaccuracies in the transport scheme;
less precision can have an unpredictable effect on the overall accuracy through the
transport scheme with an operator-splitting algorithm. For this level of accuracy
(two significant digits) TWOSTEP performs the best among the tested numerical
integrators.

A componentwise analysis of the numerical error shows that smooth components
like O3 are integrated correctly by all methods. However, the species involved in fast
photochemistry are integrated less precisely. Peaks of error appear exactly during
sunset and sunrise periods (although in the measure reported here this is not appar-
ent). The two new methods are more accurate and efficient than the classic QSSA
ones or CHEMEQ), but they are not as fast as the BDF codes TWOSTEP and sparse
VODE.

The experimental conclusions presented here are restricted to the model used
and to the set of algorithms employed. More numerical tests are necessary before
drawing a general conclusion. The authors are currently involved in a comprehensive
benchmark work that will test most of the old and new algorithms (see [24]).

8. Concluding remarks. QSSA-based algorithms are explicit methods and yet
they enjoy a remarkable stability. They behave like implicit methods although their
evaluation formula is explicit. Although their relative error can be large, we must
mention that their absolute error is small and that the QSSA solutions are close
to the exact solution even for rapidly varying components like NO; QSSA-based
methods preserve quite well the overall behavior of the solution. This explains why
these methods have been successfully employed for many years for problems where
relatively large errors are accepted and small computing times are desired.

In [30] the local truncation error for the plain QSSA scheme is shown to be only
O(h) for the components with small lifetimes 7; < h. However, numerical experiments
have shown that the QSSA solutions still converge to the exact solution. The fact that
the local order reduction is not felt globally is in line with the theoretical convergence
analysis presented here.

The analysis and experiments show that the most attractive features of QSSA-
type methods are their small computational time and their easy coding, while their
main weaknesses are their low order and their relatively low accuracy. In an attempt
to overcome these weaknesses, the analysis of QSSA has led us to two new meth-
ods, the extrapolated and the symmetric QSSA. They clearly perform better than the
classic QSSA versions and the hybrid algorithm CHEMEQ. However, they are not
as fast as the BDF codes sparse VODE and TWOSTEP for the test problem pre-
sented here. When considering a complete 3-D model involving transport of chemical
species, QSSA-type methods allow for lumping of species that results in increased
efficiency. Whether the BDF codes will benefit as much from lumping remains to be
seen. Preliminary work with TWOSTEP [31] shows promise in this direction.

4The use of sparse linear algebra routines with VODE reduces the total computational time for
our test problem by a factor between two to three.
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All the tested methods show small computational times for low accuracy. To
see why computational speed is so important, let us mention that on a HP-935A
workstation 1 day of chemistry simulation with DAE QSSA (at a single grid-point,
with our comprehensive model) takes roughly 1 second. A 3-D model may have
50 x 50 x 20 grid-points (a realistic value for a regional model) and the chemistry
must be evaluated at each grid-point. A simple calculation shows that, with a serial
code, 1 day of simulation will need at least 15 CPU hours (without counting the
transport part and the overhead associated with reading and writing megabytes of
data). The net result is that the simulation time is of the same order as the wall
clock time. One possible solution is to move the codes on more powerful machines
(e.g., a version of STEM-II, see [5], is currently running on a CRAY-C90). Another
direction would be to take advantage of the inner parallelism of the problem and to
write parallel versions of the simulation codes (some work has also been done in this
direction).

Work still needs to be done to develop special integration methods that will im-
prove more dramatically both the speed and the accuracy of the atmospheric chemistry
modeling codes.
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