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Abstract

It has been observed elsewhere in the literature that the activation of constraints in a trajectory optimization problem
can lead to higher index DAEs. Several existing codes can handle a number of these constrained problems. In this note
we will discuss why the situation is more complex than just saying a higher index DAE occurs. The discussion is in the
context of a specific industrial code SOCS but the observations made here have relevance for a number of methods and
have implications for what types of test problems a code should be tested on. (©) 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

A trajectory optimization problem typically takes the form

minJ (u) (la)
F(x',x,u,t)=0, (Ib)
C(x,u,t) >0, (1c)
Boundary Information. (1d)
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Here J is the quantity to be minimized, the cost function, # is control, (1b) are the dynamics
equations and any equality constraints that hold for all (z,x), and (1c) are inequality path constraints.

Many modeling processes, such as those in constrained mechanics naturally lead to a model which
is a system of differential algebraic equations (DAE) in (1b). See for example, [4-7,12,17]. However,
even if (1b) is a system of ordinary differential equations (ODEs), DAEs will result when some
of the constraints in (1c) are active. It is known that many numerical discretization schemes, such
as the IRK methods discussed here, fail to converge or exhibit an order reduction when applied to
DAEs. This order reduction depends not only on the index of the particular DAE but also on their
structure. Having said this, a number of software packages have been developed and successfully
applied to some of the optimization problems that arise in applications.

However, the situation is much more complex than merely stating that there is an order reduction
and the index of the DAE is some number. In this paper we shall examine the significance of the
presence of DAEs more carefully. Our discussion will be within the context of a particular industrial
optimization package SOCS. However, the implications are of more general interest.

Section 2 will summarize some basic information about SOCS and describe the discretizations
that it uses. Section 3 will develop some basic facts about these discretizations. Some of the order
results in this section are known and some have not appeared elsewhere in the literature. Section
4 will discuss some preliminary implications of the analysis in Section 3. Academic test problems
illustrating these ideas appear in Section 5. These test examples will show that the order estimates,
even though they are sharp, do not tell the full story. Section 6 will discuss these differences. Related
discussions that address different issues can be found in [1,8,9,15,16]. Finally, this paper is part of
a larger investigation concerning the optimization of machine tool paths. In this application high
precision is necessary. This is reflected in our choice of stopping tolerances.

2. SOCS

Sparse optimal control software (SOCS) is a software package developed at Boeing for the solu-
tion of optimal control problems that arise in industry [2,3]. SOCS can also solve related problems
such as parameter identification. SOCS discretizes the dynamics and then solves the resulting nonlin-
ear programming program (NLP) with a sequential quadratic programming (SQP) based algorithm.
SOCS starts with an initial discretization mesh and then automatically generates finer and finer
meshes until sufficient accuracy is obtained. The SOCS mesh refinement strategy is based on [3].

In our discussions it will be important to keep in mind what the goal of SOCS is. At a given grid
level, the discrete problem is optimized. The termination of the grid refinement iteration, and hence
of the overall calculation, is via a tolerance for an error in integrating the dynamics and satisfying the
constraints. Thus the emphasis is not on the accuracy of the estimation of some theoretically optimal
control. Rather, the emphasis is on assuring that the computed control will produce a trajectory
and cost in the real-problem close to that of the computed trajectory and cost. Thus assuming our
modeling equations are good, using the computed control in the actual process will result in a
trajectory that will satisfy the constraints to high accuracy and provide close to the computed cost.
This computed control may not be a “good” estimate of the optimal one. This is not a problem in
many industrial examples for two reasons. One is that some of the parameters in the cost are picked
for design purposes and could easily be changed somewhat. Secondly, for complex problems the
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goal is to produce a control that does significantly better than current practice. We shall comment
more on these ideas later.

SOCS currently uses two discretization schemes. On the initial course mesh it uses an integrator
based on the trapezoidal rule. We shall refer to this as TR. Later as the mesh gets finer, SOCS
switches to a higher order method based on Hermite—Simpson interpolation which we shall refer to
as HS. Both of these methods are mathematically equivalent to implicit Runge—Kutta (IRK) methods
known as the two- and three-stage Lobatto IIIA methods. There are other options in SOCS which
will not be discussed here.

3. The IRK discretizations

A general s-stage IRK method is defined by its coefficients vectors b = (b;)i_;, ¢ = (¢;)._, and
matrix .o/ = (a;;) These coeflicients are often written in a so-called Butcher tableau

c | oA

o

S
ij=1*

When used as an initial value solver, the method applied to the DAE
F(x',x,t)=0 (2)

proceeds as follows.
Let the discretization times be ¢,. The estimate for x(¢z) at time ¢, is denoted x,. Given x,_; at
t,_1 we solve for x, at t, =t¢,_; + h,_1 by solving the system

F )(,'l:xnfl + hnfl Zaij)(j/atnfl + cihnfl = 0, i= la R (3)

Jj=1

for the stage derivatives X;. If there are m equations in (2), then (3) consists of s -m equations in
the s vector unknowns X;. Given the X/, the value of x, is given by

Xn = Xn—1 + hn—l Zbl)(,/

i=1

For TR, HS we have s = 2,3, respectively, and the Butcher tableaux are

0 0 0 0

N U

1 2 | 24 3 24
2 N

1 6 3 6

2 ‘ o2 1

6 3 6

In optimizing J(u) with the constraint consisting of only the dynamics x’ = f(x,u,¢) the control
variable u is free and it may be natural to consider the possibility of discretizing u differently than
the state variable x. However, if state constraints are active, then the process is a DAE and part
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of u is no longer free. This raises the possibility that the numerical method on the DAE has been
altered by the fact that the control u was thought of differently.

In a direct application of an IRK method the control is treated the same as the state variable x.
For example,

F(x',x,u,t)=0 4)
can be discretized using TR by solving the following set of equations:
F(Xllaxn—lsun—l,tn—l):O, (Sa)
’ - / ’ i / / _
F X2axn71 + 2 (Xl +X2 )5 Up—1 + 2 (Ul + Uz)a In| = 0 (Sb)
with the updates
hy—
Xy =X+ = (X + X)), (6a)
hn—l / /
Uy = Uy + T(Ul + U,). (6b)

Note that when viewed as an ODE solver one has to solve (5) and then use (6) whereas a boundary
value problem (BVP) approach has both (5) and (6) available at the same time.

SOCS does not, at this time, directly apply the IRK formulation but rather approaches the IRK
discretization as a collocation. It also assumes that the system of DAEs is semi-explicit:

x' = f(x,u,t), (7a)

0=g(x.u.1). (7)
For TR, SOCS tries to minimize the cost and satisfy the constraints

h,_

Xp — Xp—1 — Tl(f(-xn’umtn) + f(xn—laun—latn—l)) =0 (88.)
along with

g(xmunaln):o (gb)
forn=1,2,....

In contrast TR, viewed as an IRK, when applied to (7) gives the set of equations:
Xllzf(xn—laun—latn—l)a (98,)
Ozg(xn—laun—]stn—l)a (9b)

- b
X, = 1 (%o + P 4 X+ LU+ U, ) %)

he e
0=g (xams + P51+ XD+ U+ U, ) o)
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hy,—
Xy =X+ = (X X)), (%)

hy—
ty = thy1 + 5 (U] + U3). (9

Note that if (9¢) and (9f) are substituted into (9¢) and (9d) and then (9a) and (9¢) are then used
to eliminate X/,X; in (9¢), we wind up with (8). Thus, the IRK representation is mathematically
equivalent to the collocation form. However, it has some redundant variables. Note that U, U,
appear only in the expression u, | + (h,_/2)(U{ + U,) which is equal to u,. This does not alter our
observations but it could impact on actually using the IRK formulations. Similar comments hold for
HS [1]. SOCS implements HS as a collocation and not directly as an IRK.

It is known that DAEs pose problems for IRK methods and a reduction of the order of conver-
gence may occur. Most of the existing theory deals with DAEs in Hessenberg form. For index two
Hessenberg DAEs

V' =f(yu), (10a)

0=9(y) (10b)
with g, f,, invertible in a neighborhood of the solution it is known that:

Theorem 1 (Hairer and Wanner [20] and Jay [21]). Suppose that the s-stage Lobatto I11A method
is being applied to the index two Hessenberg DAE (10). Then for consistent initial conditions at
to the local error can be estimated by

i — Wty + ho) = O(hg"™ ),

uy — u(ty + ho) = O(hy).
The global error is
Yu— Y(t) = O(hzs_z)a

u, — u(t,) = O(h*™"),

where h:=max, h,. For s even and fixed stepsizes h, = h this last estimate can be improved to
U, — u(tn) = O(hﬁ)

As a corollary we obtain:

Theorem 2. Given consistent initial values at ty for the index two Hessenberg DAE (10) we have

(1) For TR the local error is y, — y(ty + ho) = O(h3), u; — u(ty + ho) = O(h3) and the global error
is v, — y(t,) = O(h*),u, — u(t,) = O(h) where h:=max, h,. For fixed stepsizes h,=h we have
U, — u(tn) = O(hZ)

(2) For HS the local error is y, — y(to + ho) = O(h), u; — u(ty + ho) = O(hy) and the global error
is y, — y(t,) = O(h*),u, — u(t,) = O(h*) where h:=max, h,,.
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We shall see that we also need results for index three Hessenberg systems

V'=1(2), (11a)
Z'=k(y,z,u), (11b)
0=yg(»), (11lc)

where g, f.k, is invertible in a neighborhood of the solution. The following next two results have not
appeared in the literature. Their proof is rather long and technical and is outlined in the appendix.

Theorem 3. Suppose that the s-stage Lobatto IIIA method is being applied to the index three
Hessenberg DAE (11). Then for consistent initial conditions at ty the local error can be estimated

by

1= ¥ty + ho) = O(hg ™17, (12a)

z1 — z(to + ho) = O(hy), (12b)

uy = u(ty + ho) = O™, (12¢)
For s=4 the global error is

Y — W(ty) = O(K*7?), (132)

z, — 2(t,) = O(° ™), (13b)

u, — u(t,) = O(h* ), (13¢)

where h:=max, h,. For s =2,3 (IR, HS) there is generally no global convergence.

One important case is when u, which is often the control, enters linearly in (11b).

Theorem 4. In addition to the assumptions of Theorem 3 suppose that (11b) is linear in u. Then the
assumption s =4 can be relaxed to s=3 and the global error in y given by (13a) can be improved
to y, — y(t,) = O(h*~*). In this case, for HS the global errors in y,z,u are O(h?*),0(h*),0(1),
respectively.

Numerical experiments indicate that the results in Theorems 1-4 are sharp. In fact, the conclu-
sions of Theorems 1-4 also hold for time-varying systems. Note that there is generally no global
convergence of TR (the case s =2) when applied to index three Hessenberg DAEs.

One might then conclude that it would not make sense to use HS on a problem which might be
index three along a portion of the trajectory since the control would not be computed. However,
this need not be the case for a code which uses strategies similar to those in SOCS. We begin to
examine this question in Sections 5 and 6. First, we will examine the linear constant coefficient case
more carefully since these results will be used later in our discussion of the numerical examples.
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Table 1
Local error of TR method applied to Nx’' + x = f(¢) with index 4

X1 X2 X3 X4
3 (/2 = 13+ ) (/5 = 1) o /5 0
a STOSEN RO VN /5 /s 0
" SO TS 51 I AN PO /4 0
" LIAARE VAR Ve S0+ oS8 0
h HCTPRE A /4 0 0
1 21 0 0 0

It is well known [10] that through linear time invariant coordinate changes one may reduce the
solvable system

Ex' + Fx =¢(t) (14)
with £, F' constant matrices to a decoupled system consisting of ODEs and systems of the form
Nx' +x = f(2), (15)

where N is an elementary nilpotent Jordan block. The local and global error for a numerical scheme
applied to (14) are the minimum of the local and global error for the subsystems. The most common
situations in optimization when constraints are active are index two, three, or four systems. For the
index two system (15) is

X5 +x = fi(t), (16a)

%2 = f(t). (16b)
The solution of Nx' +x = f(¢t) is

k—1

x= (=N fO0)
i=0

In the case of (16) we get x, = f(¢), x; = f1(t) — f5(¢). Note that (16) is not a system in the form
of (10) since there is no dependence on ¢ in (10). This is not important from a general viewpoint
of method order but we will see that it can lead to an overestimate of the order reduction which is
important in understanding particular problems.

Using MAPLE one can compute the local error for each state variable. In Tables 1 and 2 the
x; are the components of x and the f; are the components of f. In the local error calculation the
derivatives are evaluated at the grid point and the exact error is given. The index three case is given
by deleting the x; column and reducing all subscripts by 1. Similarly, the index two case is given
by deleting the x;,x, columns and reducing all subscripts by 2. There are two key things to note
about Tables 1 and 2. One is that the order reduction in the local error depends on whether certain
derivatives of f5(¢), f4(¢) vanish. This will be commented on later. The second is that unlike the
previous theorems the tables do not give error estimates but are the exact error coefficients. Thus
they not only give order bounds on the error but, at least for the special case in which they apply,
they also guarantee a certain size to the local error.
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Table 2
Local error of HS method applied to Nx’ + x = f(¢) with index 4

X1 X2 X3 X4
" U =0+ (/s =) /4 0
it U =S+ 56y Wy 5.4 0
A ﬁ 54) _ % §5) + é 5‘6) % 54) _ % 5;5) le< 5‘4) 0
i’ SRR Vo /4 0 0
h iy 0 0 0
1 0 0 0 0

This is the local error assuming exact function evaluations. Understanding the global error is more
complex. Part of the global error is given by the accumulation of the exact local errors given in
the previous two tables. In general, the order results for time-varying DAEs of indices 2 and 3 are
given by Theorems 1-4. However, sometimes a better order is possible. To see when this occurs
it suffices to consider (15) with N a Jordan block. Suppose that N is an index three Jordan block.
We consider constant stepsizes /4, =h. Again using MAPLE on the HS equations we see that in the
recursion for the x; variable we get a formula with 42~" in it. Thus, ignoring function evaluation and
roundoff errors, the error recursion for x; at step n takes the form

X3 13 X3 8&;171
€Gn = €1 T e, T o (17)
where &, , is the global (G) or local (L) error for the components x; at step n. If & is O(h?), then the
far right term in (17) is an O(4) term which is added on each time step. For fixed stepsizes, assuming
tend — to = O(1) we have O(1/h) steps and the global error in x; is O(1) as stated in Theorem 4
for u. The argument is more complicated but the same conclusion holds for variable stepsizes.
However, as shown in Table 1, it is possible for x to have global order higher than 2 provided
the forcing function f is a low degree polynomial. In this case there will be some convergence
in x;. This effect is not very important in most problems where f is an input or forcing function
since most forcing terms are not low degree polynomials. However, it can be a factor in our setting
here where f may come from a constraint. Linear constraints are common in applications. Thus this
effect could be important in choosing good test problems.

There is another error component that is potentially equally important. We shall loosely call this
evaluation error. This arises because the functions are not evaluated exactly. In fact, in practice
they are often the results of interpolated table lookup. Also, the solution of the nonlinear integration
equations is not done exactly so that there is numerical error, for example, in satisfying (8a). These
two types of errors enter in different ways but have similar effect in terms of error analysis. There
is another way in which they are quite different philosophically and we will discuss that shortly.
Looking at (8a) we can think of the error in satisfying the constraints as adding an ¢ to the right-hand
side. On the other hand, an error ¢ in evaluating f would add an Ae to (8a). In the solving of the
IRK equations there is a division by a power of 4. For HS this is 4* in some components. Thus to
the local error we need to add a term Meh—* where the value of k depends on the index, how &
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enters the equations, and which variables are considered. This additional local error term will also
accumulate from one step to another.

Regardless of the source of evaluation error, the global error for the methods considered here
when applied to system (15) is of the form
~ & L o

MK + M m + [Error in initial conditions]. (18)

The value of » depends on the method, the index, and which variables are considered while the value

of k depends on the index, which variables are considered, and what type of evaluation error ¢ is.

Thus, it is possible to get extra order reduction when the Meh=* term starts to become significant.

4. Implications for trajectory optimization

Many physical systems are modeled by a second-order system x” = f(x’,x,u,t). Even when the
original model is unconstrained, constraints may become active during the optimization process.
When constraints are active we have a DAE and all or part of the control u becomes determined
and should thus be considered as part of the state variable. A velocity constraint g(x’,x,¢) =0 leads
to DAEs of index at least two while a position constraint g(x,7) =0 leads to DAEs of index at least
three. In most complex systems the control u# will only appear in some of the dynamics equations.
If the constraints are in terms of variables x; for which the x! equation does not involve u, then the
index can be even strictly higher than three [11].

We have seen that one effect of the existence of the system being higher index is that there can be
order reduction in the discretization. What are the effects of this order reduction on the optimization?
One effect, reduced order in computation of the controls has been discussed elsewhere. We will also
discuss this shortly but first we wish to examine what the effect is on computational effort.

The order parameter p appears in a key way in the mesh refinement strategy of SOCS. This
strategy is described in detail in [3]. Basically, the strategy is as follows. The user specifies a local
error tolerance &ro. which will terminate the optimization. Initially, a uniform grid with a user
specified number of grid points is used. At each iteration the number of grid points is increased
from N grid points to between 1.2N and 2N — 1 grid points. On each grid update between 0 and 5
uniformly spaced grid points are added between each pair of grid points and a grid point is added
at a linearly interpolated estimate of any events. The actual number of grid points chosen and the
selection of which subintervals to place them is calculated by a discrete optimization problem. This
minimization problem tries to minimize the new integration error after the grid points are added with
the restriction that there is no need to add additional points in a subinterval once the local truncation
error for that subinterval is estimated to be safely below eror. This current error is computed by
an integration of the dynamics not utilizing constraints with a mesh that halves the current mesh.
The order parameter p appears in the estimate of the effect of adding additional meshpoints to any
subinterval.

What is the effect of a wrong estimate of the order on the SOCS code? Suppose that a constraint
is active on part of an interval. If the actual order is lower than the order parameter of SOCS, it will
overestimate how much effect a stepsize reduction will have on the error when the system is a DAE.
Thus it will underestimate how much to subdivide the interval to reduce the error. The code may
work but with reduced efficiency since it will put fewer points than needed into regions where order
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reduction occurs. This is the problem of making suboptimal mesh selections. Eventually, mesh points
go where they are needed but the code may put off placing them where most needed. Since the
NLP problem size grows with the size of the mesh this can increase significantly the computational
effort.

There is another effect that can be even more important. Meshpoints are only added if they are
needed to reach the termination criterion which for SOCS is based on an estimate of the local
truncation error. Thus, one typically sees that early on, SOCS adds a maximum number of N — 1
points and then adds a lower percentage of points towards the end. If the order is lower than the
order parameter of SOCS, SOCS may add too few points and will not add them where they are most
needed. This can lead to a series of extra iterations with grids which were not increased enough
precisely when the grid is large and the iterations are the most expensive. We will see this effect
on the examples to follow.

The theoretical analysis shows that the order reduction can be less for some simpler problems with
simple forcing functions. This might sound like a desirable effect, but it means that when testing a
code on simpler problems, say with bound constraints, one might not see the effect of order reduction
due to reduced » in (18) and thereby get a misleading interpretation of code performance.

There is also the question of order reduction due to the second term in (18). This is a more
difficult problem since a smaller stepsize may not improve things. Working with this term is not
easy. Many codes, such as SOCS, have a number of tolerances with interlinked limits on how they
can be set. Resetting these tolerances in the presence of reduced order due to £ > 0 can be a difficult
and code dependent task.

As seen from above there is a reduced accuracy in the computation of the control u. In fact,
on some constraints, it is possible for the approximation to only be an O(1) approximation of
the optimal solution. Surprisingly this need not always be as bad as it sounds. This is due to the
philosophy behind the termination strategy of SOCS and will be discussed in greater detail after
presenting some computational examples.

5. Computational examples
To illustrate how the previous observations can actually affect the performance of an optimization

package we will consider the following simple problem which has the same structure as many
problems in mechanics:

J(u) = % /03x2 + qi dt, (19a)
X =u, (19b)
x=g(t), (19¢)
x(0) =S5, (19d)

X'(0) = 0. (19¢)
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Table 3
Standard mesh refinement, g4 constraint
GRID NPT NFG NFE NRHS ERRODE ERROBJ CPU
1 10 15 372 7068 0.29E — 02 0.47E — 06 0.70
2 19 4 74 2738 0.18E — 03 0.59E — 06 0.35
3 37 4 74 5402 0.50E — 04 0.30E — 05 0.69
4 73 4 74 10730 0.20E — 05 0.27E — 07 1.9
5 127 4 74 18722 0.67E — 06 0.25E — 09 4.6
6 152 3 59 17877 0.18E — 06 0.28E — 09 4.5
7 182 3 59 21417 0.15E — 06 0.40E — 09 6.4
8 218 3 59 25665 0.44E — 07 0.67E — 10 7.6
218 40 845 109619 26.80

This example, simple though it is, turns out to be capable of illustrating a number of facts that
are important. Note that when (19c¢) is active, (19b), (19¢) is an index three DAE in (x,u). If the
factor ¢ is too large, then the constraint need not be active. We take ¢ = 10~* which is typical of ¢
values when this term in the cost is used to regularize the calculations. We consider three possible
constraints g(¢) initially. The first one is no constraint (¢(¢) = —oo). The other two are

g(1) =16 —4(t —4), gu(t)=15—(t — )"

The functions g, and g4 are defined so that they are of comparable size and are active for approxi-
mately the same length of time.

To simplify our discussion HS is used at every iteration and 10 initial grid points are chosen
uniformly. NPT is the number of grid points. The number of function and gradient calls were the
same after the first iteration and are called NFG (these are the NFC and NGC of SOCS). NFE is the
number of function evaluations. After the first iteration there was always one Hessian call. NRHS is
the number of right-hand sides evaluated. ERRODE is the computed error in the integration and it is
used as the stopping criterion. This is consistent with the SOCS strategy of emphasizing accurately
computing what the candidate control does as opposed to worrying about how close it is to the
optimal control. CPU time is in seconds.

Table 3 gives the results from SOCS on this problem.

Fig. 1 shows the control. The small jump at the right end is an anomaly due to the value of u at
the endpoint not being fully constrained by the dynamics. Fig. 2 shows the state trajectory and the
constraint. The constraint is active for approximately 2.2 <t <3.

The standard SOCS strategy is based on the order parameter being equal to p =4. We reset this
parameter to p = 2. The result is given in Table 4.

Table 4 shows reduced iterations and CPU time. This improvement is because of the DAE behavior
giving reduced order and not to this just being a better choice. To illustrate this we consider the
no constraint case. Tables 5 and 6 show that there is no improvement in the modified case for the
unconstrained problem and in fact the grid is slightly larger for the order parameter set to p = 2.
Note that in Table 3 there are several iterations starting with the fifth iteration where the termination
criterion is not met and yet a minimal number of points are being added and those that are added
are not added where they will be most needed.
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Quartic Constraint, Control vs. Time
100 T T T T T

150 1 1 1 ! !
0 0.5 1 1.5 2 2.5 3

Fig. 1. Control with g4 constraint.

Quartic Constraint, State vs. Time
16 T T T T T

Fig. 2. State with g4 constraint.
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Table 4
p =2 mesh refinement, g4 constraint

GRID NPT NFG NFE NRHS ERRODE ERROBJ CPU
1 10 15 372 7068 0.29E — 02 0.47E — 06 0.78
2 19 4 74 2738 0.22E — 03 0.59E — 06 0.39
3 37 4 74 5402 0.30E — 04 0.11E — 05 0.89
4 73 4 74 10730 0.49E — 05 0.26E — 06 2.1
5 137 4 74 20202 0.70E — 06 0.89E — 10 8.2
6 164 3 59 19293 0.83E — 07 0.57E — 09 7.3

164 34 727 65433 19.63
Table 5

Standard mesh refinement, no constraint

GRID NPT NFG NFE NRHS ERRODE ERROBIJ CPU
1 10 11 172 3268 0.89E — 02 0.58E — 13 0.41
2 19 4 74 2738 0.15E — 04 0.32E — 12 0.24
3 37 4 74 5402 0.10E — 05 0.15E — 14 0.34
4 65 4 74 9546 0.17E — 06 0.94E — 14 0.51
5 78 3 59 9145 0.29E — 06 0.11E — 12 0.50
6 93 3 59 10915 0.70E — 07 0.25E — 13 0.58

93 29 512 41014 2.59
Table 6

p =2 mesh refinement, no constraint

GRID NPT NFG NFE NRHS ERRODE ERROBJ CPU
1 10 11 172 3268 0.89E — 02 0.58E — 13 0.44
2 19 4 74 2738 0.24E — 04 0.36E — 12 0.28
3 37 4 74 5402 0.82E — 06 0.13E — 13 0.40
4 65 3 59 7611 0.48E — 06 0.46E — 13 0.52
5 83 3 59 9735 0.49E — 06 0.46E — 13 0.63
6 99 3 59 11623 0.25E — 07 0.16E — 12 0.74

99 28 497 40377 3.01

It is instructive to examine the grid strategy. Fig. 3 shows the additional grid points added at each
iteration for the noconstraint problem. The initial grid is at 1.0 and each successive grid addition is
0.1 below.

We see that the mesh refinement strategy is placing grid points at the left-hand edge where there
are the faster transients.

Consider now what happens with the g4 constraint. The grid additions are in Fig. 4. There is
reduced order taking place in the right third of the interval. The mesh refinement strategy is placing
points near the event around t=2.1 but delays putting the needed points in the right third because it
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1.1 T T T

09-+++ +++ + + + -

08H+H+++++ + + + + + + + + + + E

0.7 - ++H+ ++H+ + + + ++ + +  + + A

0.6 H H ++HF +H++ + + E

0.5 A -+ + -

0'4 1 1 L 1 1
0 0.5 1 1.5 2 25 3

Fig. 3. Grid additions with no constraint.

1.1 T T T T T
11 + + + + + + + + -
09 + + + + + + + + +
08+ + + + + + + + 4+ 4+ o+ o+ o+t o+ +
0.7H +++++ ++ + + + o+ o+ + o+ R
0.6 ++++ R R T S A
0.5H+  + + + + o + H+ H 4
044 H+ +H +H  +  ++ + + o+ + 4+
0.3F H 4 H+H HH H o+ + +H o+ H# o+ 4 ++ H+
0.2r 4
0.1 1 L 1 1 1

0.5 1 1.5 2 25 3

Fig. 4. Grid additions with g4, standard mesh refinement.



N. Biehn et al. | Journal of Computational and Applied Mathematics 120 (2000) 109-131 123

11 T T T

1+ + + + + + + + + .
0.9 + + + + + + o+ + + A
08+ + + + + + + + o+ o+ ++
0.7H ++ ++ + ++ + + e o A S A
0.6+ +HH#HiHE +H+ o+ T HHEEE
0.5 [+ + 4+ + + o+ -
0.4 L 1 L 1 I

0 0.5 1 15 2 25 3

Fig. 5. Grid additions with g4, modified mesh refinement.

Table 7
Statistics as a function of the order parameter p in SOCS

p NPT Iter.
1 231 9
2 137 5
3 261 9
4 292 10

overestimates what the effect of the added points will be. There are also several iterations that add
fewer points than allowed.

Fig. 5 shows the grid additions with the mesh strategy modified by assuming that the order is
really 2 rather than 4. We see that while a few more grid points than needed are placed in the left
two-thirds, there are more points placed early on in the right third where they are needed.

The best choice of the order parameter p also depends on how long constraints are active and
other factors. Ideally, this parameter should be dynamically estimated by SOCS. We close this part
of the discussion with one final example. This is the same optimal control problem (19) but on the
interval [0,4] and constraint (19¢) is x =11 — 16e' =2, Table 7 gives the mesh size and number of
iterations for this problem for various values of the order parameter p.

Table 7 shows that on this problem whose optimum solution is unconstrained for half the time
and index three for the other half the choice of p =2 was clearly best.

We have then that the presence of DAEs is causing order reduction and hence there are ineffi-
ciencies in the mesh selection. But it is important for us to understand where this order reduction
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Table 8
Standard mesh refinement with order parameter p =4, g, constraint

GRID NPT NFG NFE NRHS ERRODE ERROBJ CPU
1 10 16 247 4693 0.29E — 02 0.71E — 03 0.58
2 19 4 74 2738 0.17E — 03 0.30E — 05 0.34
3 37 4 74 5402 0.34E — 04 0.12E — 05 0.73
4 73 4 74 10730 0.30E — 05 0.18E — 07 2.0
5 128 4 74 18870 0.43E — 06 0.42E — 08 5.5
6 153 5 89 27145 0.23E — 06 0.17E — 09 9.4
7 183 3 59 21535 0.24E — 06 0.10E — 10 6.2
8 219 3 59 25783 0.17E — 07 0.15E — 10 7.0

219 43 750 116896 31.79
Table 9

Order parameter p =2 for mesh refinement, g, constraint

GRID NPT NFG NFE NRHS ERRODE ERROBJ CPU
1 10 16 247 4693 0.29E — 02 0.71E — 03 0.64
2. 19 4 74 2738 0.16E — 03 0.25E — 05 0.44
3 37 4 74 5402 0.22E — 04 0.12E — 05 1.1
4 73 4 74 10730 0.54E — 05 0.61E — 08 3.6
5 134 4 74 19758 0.99E — 06 0.15E — 08 6.7
6 160 3 59 18821 0.11E — 06 0.41E — 10 10.
7 192 3 59 22597 0.28E — 07 0.23E - 10 7.1
192 38 661 84739 29.68

is coming from since this has important consequences on more complex problems. If the order re-
duction is due to a reduced value of » in (18), then the codes taking smaller stepsizes will still
eventually lead to a reasonable solution although not in an efficient manner. However, if the order
reduction is due in part to the 2~ value, then taking smaller stepsizes is generally not going to lead
to any improvement.

We now turn to briefly examining what is causing the order reduction in our specific example.
To see which terms in (18) are important, we consider our test problem with the quadratic forc-
ing function g,(¢). Table 8 gives the result with the standard mesh refinement strategy with order
parameter p =4 while in Table 9 the order parameter p =2 mesh strategy is used.

According to the analysis of Section 3, since g(z‘” =0, and the constrained DAE is exactly the
system studied in Section 3, we do not expect there to be order reduction effects due to truncation
error. However, the numerical results show that the g, case is closer to the g, case than the no
constraint case. (Note that there is one more iteration in Table 9 than in Table 4 but that is because
the iteration just misses the 1077 tolerance at the end of iteration 6 in Table 9 and has to take one
more iteration.)
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This suggests that on this problem with these tolerances that the order reduction might be due in
part to the eh=* term.

5.1. Its not that simple

We now turn to an issue which is very important for trajectory optimization codes. Namely do
they get a reasonable answer? Let us look more carefully at the computational example. According
to the theory when the constraint is active and it is not a cubic polynomial, HS should give an O(1)
error. Since this example is linear with constant coefficients and has fourth degree polynomial as
forcing function, O(1) is the actual size of the error and not an upper bound. Yet looking at Fig. 1
we see that SOCS appears to be computing the control. Examining the computed solution and the
stepsizes selected one finds that in fact the answer for the control is correct with the error between
O(h) and O(H?).

This is not due to some weakness in the theory. We have taken a computed value at say t=2.5 and
integrated forward the index three DAE using HS implemented as an IRK. The computed value for
the control was, in fact, wrong by a term which was O(1) in size. Thus using the HS discretization
SOCS has found a correct value for the control but the HS discretization cannot correctly integrate
the DAE. We have looked at an even higher index version of the test problem using x”/ = u and
constraints with all derivatives nonzero. The theory and numerical tests show that HS implemented
as an IRK gives an error that grows as a negative power of 4. However, SOCS again found an
approximation to the control although it was not quite as accurate as in the index three case.

These observations should not be construed as implying that one does not have to worry about
the discretizations or the DAE theory. We have seen constrained problems where the codes failed.
We have already noted the effects of order reduction. Rather understanding what is happening here
is important not only in terms of how to apply DAE theory but also in the implementation of
different algorithms so as to reliably solve larger classes of problems. Convergence of optimal control
approximations has been widely studied. However, this theory does not generally apply to our
situation. For example, in [13,14] an assumption is made which, in our terminology, means that the
DAE is at most index two when constraints are active.

The key turns out to be how SOCS is implemented. The HS method is not actually used to first
integrate the constrained problem and then evaluate the cost functional as is done with some other
approaches which integrate the dyamics in order to reduce the problem size. Rather SOCS proceeds
as follows. The constraints and discretization are only required to hold to specified tolerances. The
default, and the one we have used, is the square root of machine precision which is 1.4832- 1078
in our case.

In addition, although the theoretical solution is unconstrained up to a particular time and then
constrained after that, this is not true for the numerical solution. While it does not show up on the
graphs there is usually a small amount of constraint chatter around the time the constraint becomes
active. That is, for a few time steps after a constraint should be theoretically active the constraint
alternates between being active and inactive. The time steps in this region are typically 10~4-1073.

In the actual implementation of SOCS, HS is applied to the dynamics and the control is discretized
separately. However, as noted earlier the resulting problem, when constraints are active, is equivalent
to applying the IRK formulation to the constrained problem. In problems where there are multiple
controls, part of the control variable will remain unconstrained, free for optimization, and part will
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become part of the DAE state variable. However, that does not occur in the single input test problem
discussed here. Given computed values of x, u the dynamics are integrated by HS at a halved stepsize
and the local truncation error is estimated. Constraints are not used in this phase. It is done using
the computed control u.

We have experimented with a number of other tolerance settings but we limit our discussion here to
the default settings in SOCS. Similar observations on the approximation hold if the mesh refinements
are made uniform. In this case the overall optimization stops when the local error estimate is below
107 at all grid points. The interior logic of SOCS prevents considering finer error tolerances.

In order to be specific we shall make a number of assumptions which are stronger than necessary.

Suppose that the process is modeled by a second-order dynamical system x” = f(x',x,u,t) where
f is smooth in x’,x,u,t and ¢ is in a finite interval which for simplicity is assumed to be fixed.
Suppose that the optimization problem has a unique solution x,u. Furthermore, suppose that there is
a partition of the ¢ interval into several subintervals. On the interior of the ith subinterval x,u is a
smooth solution of either the original dynamics or a solvable DAE

x"= f(xX,x,u,t), (20a)

0=CUW,x,1). (20b)

Here we assume that [CU,CH'] is full row rank, C% is a subset of the constraints C, and (20)
is considered a DAE in x and a subset of u. Finally, we suppose in the final solution that u is
continuous and piecewise smooth. We call such an optimization problem nice.

Suppose that we have a nice optimization problem. Suppose that we have run the SOCS algorithm
and that it has generated numerical estimates for x,u and a final mesh .#. Note that SOCS has
selected among those sequences that satisfy the inequality constraints to the tolerance. In particular
at points with constraint chatter the inequality constraint holds to tolerance but the equality does not
hold within tolerance. Let us examine what the true solution looks like. Since SOCS places grid
points very close to where constraints change in effect what happens right at these changes is not
important here in our discussion. Let us take a closer look inside a subinterval i.

The mesh refinement has continued until the local error estimate is below 10~7 everywhere. Thus
we expect that it will be significantly lower than that in most places. In fact, where the constraint
is active the stepsize is around 0.02 or smaller. Note that (0.02)° =3.2-107°. There are other IRK
methods that will converge for some DAEs when HS does not. We mention here the 3-stage Lobatto
IIIC whose Butcher tableau is

0 1

—_

w
(=)}

p— N |

ADl= |NI—= N — N[—
—
WIN | WIN N|u-

This method integrates successfully index three DAEs in Hessenberg form (11) but with reduced
order in the control. From [24] we have convergence of Lobatto IIIC for the variables y,z,u with
orders 2,2, 1, respectively. Suppose then that we look at the Lobatto IIIC solution of the constrained
DAE on the mesh .#. It will provide estimates of the control and state. Furthermore, when the local
error is checked the constraint is ignored and the integration is done with local order O(%°). Finally
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note that the difference between MA® being 0.8 - 10~7 and 0.4 - 1077 is only about a 10% reduction.
Thus, we have the Lobatto IIIC solution is also feasible for meshes very close to the mesh ..

We are not asserting that the Lobatto IIIC solution is the one chosen. We have integrated the
constrained DAE with a fixed step Lobatto IIIC method with # = 0.02 and compared this with the
results of using SOCS where the initial grid was # = 0.02 and SOCS was forced to quit after one
iteration. SOCS found the control to higher accuracy than Lobatto IIIC. Rather we are pointing
out that for discretization tolerances of approximately the same size as the termination tolerance,
that it is possible for a number of different numerical methods to produce approximations that are
feasible. And a good approximation of the theoretical optimal solution will be close to optimal for
fine enough meshes. The optimization process can choose one of these other approximations rather
than the one that would come from a straightforward integration of the constrained dynamics by
HS. For example, the values of the exact solution on a given subinterval are often either feasible or
only a small perturbation from being feasible.

6. Conclusion

We have seen that the theory for IRK methods applied to DAEs interrelates with a trajectory
optimization code like SOCS in several ways. In some cases, such as with mesh refinement, the
DAE theory correctly describes what is wrong and how to fix it. For other topics, such as convergence
of the control estimates, the DAE theory does not tell the full story and further work is needed.

The ideas and results presented in this paper raise a number of interesting questions. One is the
role that the cost function plays in the observations we have made. It is known from computational
experience that SOCS often performs better when there is some control weighting as in the examples
used here. It has also been observed that there can be an interaction between the cost and a DAE
process which can result in variational equations of lower index than the original DAE process [11].
These and other questions are under investigation.

Appendix

We outline the main points for a proof of Theorem 3. This result was derived in 1995 but was
not submitted for publication since Lobatto IIIA methods are clearly not optimal for the solution
of index three Hessenberg DAEs. For this class of problems other families of IRK methods were
shown to have better convergence properties [18-20,22-24]. A complete proof of Theorem 3 would
be extremely long and is out of the scope of this appendix. Most technical details contained in
the thesis [23] and in the article [22] will not be developed here. A proof can be given following
the four usual steps when proving convergence of collocation methods and more generally of IRK
methods applied to higher index DAEs, see [19-24]: first we show local existence and uniqueness
of the IRK solution; secondly we study the influence of perturbations in the nonlinear system of
equations; thirdly we study the local error; finally we prove global convergence by studying the
error propagation. The ideas for a convergence proof of Lobatto IIIA methods applied to index
three Hessenberg DAEs are mainly a mixture of those developed in [21] for the same methods
but applied to index two Hessenberg DAEs, of those developed in [22] to prove convergence of
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collocation methods for index three Hessenberg DAEs, and of those developed in [23] for IRK
methods with an invertible RK matrix applied to index three Hessenberg DAEs, a proof outlined
in [24].

For index three Hessenberg DAEs (11), the direct application of an s-stage IRK method reads

yvi=yo+hd bif(Y.,Z),
i=1

Z1 =2 + hzblk(K9215 (]1)7

i=1

where the internal stages Y;, Z;, U; must satisfy

Yi:y0+hzaijf(Yszj)’ (A.1a)
j=1

Zi=z0+hY ayk(Y,Z;,U)), (A.1b)
j=1

0=g(Y). (A.lc)

Various definitions for the numerical solution u; of the u-component are possible depending on the
IRK method. The Lobatto IITA coefficients satisfy the properties

Hl: a;; =0 for j=1,...,s;
H2: the submatrix 4 :=(a;;);;-, 1s invertible;
H3: b;=a, for i=1,...,s, i.e., the method is stiffly accurate.

For IRK methods satisfying H3 the numerical solution for the u-component is taken as the value
of the last internal stage, i.e., u; = U,. From H1 we have Y, = yy, Z; =z, and U, is taken as a
given value uy. When ¢(y,) =0 it follows directly from H1 that g(¥;)=0 is automatically satisfied.
We also need the simplifying assumptions

N 1
B(p): Z bicf_l = i fork=1,...,p,
i=1

s k
C(q): Zaijcf”:% fori=1,....s, k=1,...,q.
j=1

The s-stage Lobatto IIIA method satisfies B(2s —2) and C(s), hence it is also a collocation method.
We start with the local existence and uniqueness of the IRK solution:

Theorem A.l1. Suppose that (n,{,v) satisfy
g(n) =0,

(9,)(n,0) = O(R*),
(S5 )+ 950 3] + 9y 1=k)n,Cv) = O(h)
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and that the IRK method satisfies the assumptions s>=2,H1,H2, and C(2). Then for h<hy there
exists a locally unique solution to (A.1) satisfying U;=v with (yo,zo) replaced by (n,{). It satisfies
Y/=n 2Z = and

Yi—n=0(h), Z—(=0h), U —v=0(h) fori=2,...,s.

A proof can be given by adapting the one given in [23, Theorem II1.2.1] for IRK methods having
an invertible RK matrix. The condition g() =0 is necessary since g(Y;) =0 must be satisfied. For
methods satisfying H3 we have y; =Y, and since g(Y;) =0 we thus have g(y;) = 0. Whenever 5
is the value from a previous step given by an IRK method satisfying H3 the condition g() =0 is
naturally satisfied.

The second step is to analyze the influence of perturbations to the IRK solution. The main differ-

ence with [22, Theorem 3.2] is the fact that perturbations in the u-component must be considered
and that they affect all components:

Theorem A.2. In addition to the assumptions of Theorem A.l suppose that H3, B(p),C(s) hold
and that the values (7,(,7V) satisfy

g =0, An=0(h), A{=0(") forx=2, Av=0(H") fory=1.
Then we have
Ayr=P,An+hf.P.Al
+O(h|| Ay|| + K| P.AL| + "2 QAL + [|0-ALP?
+HE A+ 27 AY]P),

th,lAZl :hPZAC
+OWH]|Q, A + I[P, A + R|P.AL| + H 2] 0.AL]
+ QAL + P A + B2 AV]]?),

hQ.1 Az = R(00)hQ. AL
+ 0|0, Anl| + k[P, An|| + | AL + 2| Av]),
I Auy = R(00)h* Ay
+0(/|QAn|| + AP, ARl + hl|Q-AL|| + K (|P-AL[| + 7| Av]),

where m=min(x — 2,7 — 1,s —3,max(p —s — 1,0)), £/ =min(k — 2,y — 1, s — 3, p — ). The linear
operator S and the projectors Q,,P,,Q.,P. are defined by

S ::ku(gyfzku)ilgy:

Qy::fzS’ Py::I—Qy, QZ::SfZ, Pz:I_QZ
The arguments of P, and Q. are (yi,z1,u;). When no arguments are mentioned they are given
by (n,{,v). The notation A is self-explicit, for example we have An=n—1#, A{={—1{, etc. The
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expression R(oo) is the value of the stability function of the IRK method evaluated at co. When
the function k in (11) is linear in u we have above m =max(p —s —1,0), £/ = p — s, the quantity
|O.AL|)? is multiplied by a factor h, and there is no term | Av|*.

The proof follows the lines of the proof of [22, Theorem 3.2]. From g(#)=0=g(#]) the expression
0,An satisfies ||Q,An|| = h||P,An|| and can thus be neglected. We stress the point that we need to
consider the method both as an IRK method and as a collocation method in the proof. The main

difference in the proof comes from the estimate én(t) = O(h*~?) and the presence of ||Av|| in the
estimates.

For given consistent initial values (yo,zo,1o) We now take a look at estimates for the local error
of the IRK solution

0V (to) = y1 — ¥(to + ho),
0z, (t0) = z1 — z(to + ho),

5uh0(t0) =u; — M([() + ho)

Theorem A.3. Assume that s =2 and that H1-H3, B(p),C(s) hold. Then we have
Oy (1) = O™, dzy,(19) = O(k}),

P.(ty + ho)dzy, (o) = OChg™ P2 =0 - 5y (1) = O(hy ™).
If in addition the function k in (11) is linear in u we have P.(ty + hy)ozy,(t) = O(h{;“).

Compared to [22, Theorem 4.1] the main difference in the proof comes from the estimates 0'(z)=
O(hy™") and 0”(t) = O(hy ) where 0 = g(Y(t)) + 0(t) with Y(¢) being the collocation polynomial
for the y-component on the interval [#,#y + /o).

Finally, we can give a global convergence result.

Theorem A.4. Consider the index three Hessenberg DAEs (11) with consistent initial values and
an IRK method satisfying assumptions H1-H3, B(p), C(s), and s =4. Then for t, —ty< Const. with
h:=max, h,, the global error satisfies

Yn — y(t”) = O(hmin(p,Zs—S))’ Zn — Z(tn) = O(hs_l)a

P.(t,)(z, — 2(t,)) = O(A™™ P>7), u, — u(t,) = O(h' ™).

If in addition the function k in (11) is linear in u the assumption s =4 can be relaxed to s=3 and
we have

Vo — Y(tn) = O™ P2=D)  P(1,)(z, — 2(1,)) = O™ P27,
The technique of proof is similar to the ones given in [19,22-24]. The condition s>4 is needed

to ensure convergence for the u-component.
Theorem 3 is simply Theorems A.3 and A.4 applied with p =25 — 2.
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