```
Algorithmic Excursions: Topics in Computer Science II
Lecture 15 \& 16 : \(\varepsilon\)-net(contd.), \(\varepsilon\)-approximation and Discrepancy
Lecturer: Kasturi Varadarajan
Scribe: T. Alsulaiman
```

Let $\sigma=<a_{1}, a_{2}, \ldots, a_{m}>$ be a stream; each a_{i} is a pair (j, c), where $j \in[n]$ and c is an integer-meaning of a_{i} is: update $f_{j} \leftarrow f_{j}+c$, where $i \in[1 . . m]$.

```
Algorithm 1 Sketch Algorithm
1. Initialize: \(C[0 . . k] \leftarrow[0 . .0] / /\) count vector
2. Choose random hash function \(h:[n] \rightarrow[k]\) from a 2-universal process
3. Choose random hash function \(g:[n] \rightarrow\{-1,+1\}\) from a 2 -universal process
4. Process \(a_{i}=\left(j, c^{\prime}\right)\)
    \(C[h(j)] \leftarrow C[h(j)]+c^{\prime} * g(j)\)
5 . Output: on query \(a\), report
    \(\hat{f}_{a}=g(a) * C[h(a)]\)
```


3.0.1 Analysis

Let e_{j} be the k-vector with 1 in $h(j)$ co-ordinate, and 0 otherwise. For stream σ,

$$
\begin{gathered}
\sigma \rightarrow f=\left(f_{0}, f_{1}, \ldots, f_{n-1}\right) \rightarrow C[\sigma] \\
\sigma \rightarrow f_{0} g(0) e_{0}+f_{1} g(1) e_{1}+\ldots+f_{n-1} g(n-1) e_{n-1} \\
\sigma \rightarrow[|M|]\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\cdot \\
\cdot \\
\cdot \\
f_{n-1}
\end{array}\right)
\end{gathered}
$$

Definition 3.1 Fix $\sigma \rightarrow C[\sigma]$. C is a sketch if, given 2 streams σ_{1} and σ_{2}, the concatenation of the two streams $C\left[\sigma_{1}, \sigma_{2}\right]$ can be obtained from $C\left[\sigma_{1}\right]$ and $C\left[\sigma_{2}\right]$

If $C\left[\sigma_{1}\right]=M * f^{\sigma_{1}}, C\left[\sigma_{2}\right]=M * f^{\sigma_{2}}$,

$$
C\left[\sigma_{1} \cdot \sigma_{2}\right]=M * f^{\sigma_{1} \cdot \sigma_{2}}=M *\left(f^{\sigma_{1}}+f^{\sigma_{2}}\right)=C\left[\sigma_{1}\right]+C\left[\sigma_{2}\right]
$$

Fix $a \in[n]$. Let $X=\hat{f}_{a}$. Define random variable Y_{j},

$$
Y_{j}= \begin{cases}1 & \text { if } h(j)=h(a) ; / / \mathrm{a} \text { and } \mathrm{j} \text { maps to the same bin in } \mathrm{C}[] \\ 0 & \text { otherwise. }\end{cases}
$$

$$
\Rightarrow X=g(a) \sum f_{j} g(j) Y_{j}=f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} g(a) g(j) Y_{j}
$$

Now we compute the expected value of X , then the variance.

$$
\begin{aligned}
E[X] \quad & =f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} E\left[g(a) g(j) Y_{j}\right] \\
& =f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} E[g(a) g(j)] E\left[Y_{j}\right] \quad / / g() \text { and } h() \text { are independent } \\
& =f_{a}+\sum_{j \in[n] \backslash\{a\}} f_{j} E[g(a)] E[g(j)] E\left[Y_{j}\right] \quad / / \text { by pairwise independence }
\end{aligned}
$$

note that $E[g(a)]=E[g(j)]=0$

$$
=f_{a}
$$

Now we compute the variance.

$$
\begin{aligned}
\operatorname{Var}[x] & =0+\operatorname{Var}\left[\sum_{j \in[n] \backslash\{a\}} f_{j} g(a) g(j) Y_{j}\right] \\
& =E\left[\left(\sum_{j \in[n] \backslash\{a\}} f_{j} g(a) g(j) Y_{j}\right)^{2}\right]-E\left[\sum_{j \in[n]\{a\}} f_{j} g(a) g(j) Y_{j}\right]^{2} \\
& =E\left[\left(\sum_{j \in[n] \backslash\{a\}} f_{j} g(a) g(j) Y_{j}\right)^{2}\right]-0 \\
& =E\left[\sum_{j \in[n] \backslash\{a\}} f_{j}^{2} g(a)^{2} g(j)^{2} Y_{j}^{2}+\sum_{i, j \in[n] \backslash\{a\}, i \neq j} f_{i} f_{j} g(a)^{2} g(i) g(j) Y_{i} Y_{j}\right] \\
\text { note that } g(i)^{2}=(+1)^{2}=(-1)^{2}=1 & \\
& =E\left[\sum_{j \in[n] \backslash\{a\}} f_{j}^{2} Y_{j}^{2}+\sum_{i, j \in[n] \backslash\{a\}, i \neq j} f_{i} f_{j} g(i) g(j) Y_{i} Y_{j}\right] \\
& =\sum_{j \in[n] \backslash\{a\}} E\left[f_{j}^{2} Y_{j}^{2}\right]+\sum_{i, j \in[n] \backslash\{a\}, i \neq j} f_{i} f_{j} E\left[g(i) g(j) Y_{i} Y_{j}\right] \\
& =\sum_{j \in[n] \backslash\{a\}} f_{j}^{2} E\left[Y_{j}^{2}\right]+\sum_{i, j \in[n] \backslash\{a\}, i \neq j} f_{i} f_{j} E[g(i) g(j)] E\left[Y_{i} Y_{j}\right] \\
& =\sum_{j \in[n \backslash \backslash\{a\}} f_{j}^{2} E\left[Y_{j}^{2}\right]+\sum_{i, j \in[n] \backslash\{a\}, i \neq j} f_{i} f_{j} E[g(i)] E[g(j)] E\left[Y_{i} Y_{j}\right] \\
& =\sum_{j \in[n] \backslash\{a\}} f_{j}^{2} E\left[Y_{j}^{2}\right]+0 \\
& =\sum_{j \in[n \backslash \backslash\{a\}} f_{j}^{2} E\left[Y_{j}^{2}\right] \quad / / Y_{j}=0 \text { or } 1 ; Y_{j}^{2}=Y_{j} \\
& =\sum_{j \in[n \backslash \backslash\{a\}} f_{j}^{2} E\left[Y_{j}\right] \\
& =\frac{1}{k} \sum_{j \in[n] \backslash\{a\}} f_{j}^{2} \quad / / \operatorname{Pr}[h(j)=h(a)]=\frac{1}{k} \\
& =\frac{1}{k}\left(\|f\| 2-f_{a}^{2}\right)
\end{aligned}
$$

We now compute the error probability. By Chebyshev's inequality,

$$
\operatorname{Pr}\left[|X-E[X]| \geq \epsilon \sqrt{\left(\|f\|_{2}^{2}-f_{a}^{2}\right)}\right] \leq \frac{\operatorname{Var}[X]}{\epsilon^{2}\left(\|f\|_{2}^{2}-f_{a}^{2}\right)} \leq \frac{1}{k \epsilon^{2}}
$$

if $k \geq \frac{3}{\epsilon^{2}}$,

$$
\operatorname{Pr}\left[|X-E[X]| \geq \epsilon \sqrt{\left(\|f\|_{2}^{2}-f_{a}^{2}\right)}\right] \leq \frac{1}{3}
$$

Also,

$$
\operatorname{Pr}\left[\left|\hat{f}_{a}-f_{a}\right| \geq \epsilon \sum_{j \in[n]} f_{j}\right] \leq \operatorname{Pr}\left[|X-E[X]| \geq \epsilon \sqrt{\left(\|f\|_{2}^{2}-f_{a}^{2}\right)}\right] \leq \frac{1}{3}
$$

3.1 The Tug-of-War Sketch

Problem: We have a stream $a_{1}, a_{2}, \ldots, a_{m}$, where each a_{i} has the form (j, c), where $j \in[n]$ and c is an integer. The frequency of element j in the stream is calculated when (j, c) appears in the stream as follows:

$$
f_{j} \leftarrow f_{j}+c
$$

Estimate:

$$
F_{2}=\sum_{j \in[n]} f_{j}^{2}=\|f\|_{2}^{2}
$$

where $f=\left(f_{0}, f_{1}, \ldots, f_{n}-1\right)$ is the frequency vector of elements appearing in the stream.
The above formula can be generalized for $k \geq 0$ as follows:

$$
F_{k}=\sum_{j \in[n]} f_{j}^{k}
$$

```
Algorithm 2 Tug-of-War Sketch Algorithm
1. Initialize:
    \(x \leftarrow 0\)
    Choose random hash function \(h:[n] \rightarrow\{-1,+1\}\) from a 4 -universal process
3. Process \(a_{i}=(j, c)\)
        \(x \leftarrow x+h(j) * c\)
5. Output: \(x^{2}\)
```


3.1.1 Analysis

Let X denote x at the end of the stream. Let $Y_{j}=h(j)$. So, $X=\sum_{j \in[n]} f_{j} Y_{j}$.

$$
E\left[X^{2}\right]=\sum_{j \in[n]} f_{j}^{2} E\left[Y_{j}^{2}\right]+\sum_{i, j \in[n], i \neq j} f_{i}^{2} f_{j}^{2} E\left[Y_{i} Y_{j}\right]
$$

note that $E\left[Y_{j}^{2}\right]=1$, and by pairwise independence $E\left[Y_{i} Y_{j}\right]=0$, hence,

$$
\begin{gathered}
E\left[X^{2}\right]=\sum_{j \in[n]} f_{j}^{2}+0=F_{2} \\
\Rightarrow \operatorname{var}\left[X^{2}\right] \leq 2 F_{2}^{2}
\end{gathered}
$$

To reduce the error gap, do:

- Run t parallel, independent copies of $T u g-o f-W a r$ sketch algorithm.
- Return Z, which is the average of the outputs of the t copies.

For $Z, E[Z]=F_{2}$, which leads to $\operatorname{var}[Z] \leq \frac{2 F_{2}^{2}}{t}$.

$$
\begin{gathered}
\Rightarrow \operatorname{Pr}\left[\left|Z-F_{2}\right| \geq \epsilon F_{2}\right] \leq \frac{\operatorname{var}[Z]}{\left(\epsilon F_{2}\right)^{2}} \\
\operatorname{Pr}\left[\left|Z-F_{2}\right| \geq \epsilon F_{2}\right] \leq \frac{2 F_{2}^{2}}{t \epsilon F_{2}^{2}}=\frac{2}{t \epsilon^{2}}
\end{gathered}
$$

for $t \geq \frac{6}{\epsilon^{2}}$,

$$
\operatorname{Pr}\left[\left|Z-F_{2}\right| \geq \epsilon F_{2}\right] \leq 1 / 3
$$

For t copies of the algorithm, with 5 items for example,

$$
\begin{gathered}
t * \underbrace{\left(\begin{array}{cccc}
1, & 1, & -1, & 1,
\end{array}\right.}_{M} \begin{array}{c}
(1 \\
\cdot \\
\cdot \\
\cdot \\
\cdot
\end{array} \\
\\
\Rightarrow Z=\frac{}{} \\
\Rightarrow\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right) \\
t
\end{gathered}
$$

where

$$
\Rightarrow Z=\frac{\|M f\|_{2}^{2}}{t} \in\left[(1-\epsilon) F_{2},(1+\epsilon) F_{2}\right]
$$

by taking square root,

$$
\frac{\|M f\|_{2}}{\sqrt{t}} \in\left[\sqrt{(1-\epsilon)}\|f\|_{2}, \sqrt{(1+\epsilon)}\|f\|_{2}\right]
$$

Note: The above operation is called dimension reduction. JohnsonLindenstrauss lemma states that a small set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a way that distances between the points are nearly preserved. When $t=\frac{\log n}{\epsilon^{2}}$, the distance is preserved with high probability.

