
Algorithmic Excursions: Topics in Computer Science II Spring 2016

Lecture 13 & 14 : Estimating the number of distinct elements in a stream.
Lecturer: Kasturi Varadarajan Scribe: Albert Giegerich

In the last lecture, we looked at an algorithm for approximating the number of elements in a stream.

Algorithm:
Let a be a stream of d elements.
For any integer p >= 0, Let zeroes(p) be the maximum element in the set {i|2i divides p}

1: Pick a random hash function h : [n]→ [n] from a 2-universal family.
2: Z ← 0
3: for each ai in the stream do
4: if zerores(h(ai)) > Z then
5: Z ← zeroes(h(ai))
6: return 2Z+1/2

Analysis:
For the analysis we’ll need to introduce two types of random variables, Xr,j and Yr.

Xr,j = 1 if zeroes(h(j)) >= r

Xr,j = 0 otherwise

The only randomness for Xr,j comes from the choice of hash function h : [n]→ [n]
xr,j is a random variable with respect to that space.

Yr =
∑
j:fj>0

Xr,j

where fj is the frequency of j.

Example:

Let our stream be a = {17, 2, 3, 17, 2, 5, 7, 5}

j zeroes(h(j))
2 0
17 3
3 1
5 1
7 2

3-1

3-2

So Y0 = 5 because zeroes(h(j)) >= 0 for all 5 elements, similarly

Y1 = 4

Y2 = 2

Y3 = 1

Y4 = 0

Y5 = 0

...

Yr>3 = 0

Claim
Let t denote the value of Z at the end of the execution of the algorithm.

Yr > 0 ⇐⇒ t ≥ r

Yr = 0 ⇐⇒ t ≤ r − 1

We want to find E[Yr] for some fixed r.

E[Yr] =
∑
j:fj>0

E[Xr,j]

=
∑
j

Pr[Xr,j = 1]

=
∑
j

Pr[2r divides h(j)]

=
∑
j

1

2r

=
d

2r

One way we can think of this is that every element will contribute to Y0, an element will contribute to Y1
with a probability of 1

2 , an element will contribute to Y2 with a probability of 1
4 , etc. That is,

Pr[X0,j = 1] = 1

Pr[X1,j = 1] =
1

2

Pr[X2,j = 1] =
1

4

etc.

3-3

Because of this 2r · Yr is a good estimator for d.
Assuming any two variables are independent,

V ar[Yr] =
∑
j

V ar[Xr,j]

≤
∑
j

E[(Xr,j)
2] (Because V ar(z) = E(z2)− E(z)2)

=
∑
j

E[Xr,j] (Because Xr,j is a 01 random variable.)

=
d

2r

Pr[Yr > 0] = Pr[Yr ≥ 1]

≤ E[Yr]

=
d

2r

Pr[Yr = 0] ≤ Pr[|Yr − E[Yr]| ≥
d

2r
]

≤ V ar[Yr]

(d/2r)2
(By Chebyshev′s inequality)

≤ 2r

d

So the transition from Yr going from 0 to nonzero happens around r = log(d)

We now want to show why we output 2t+1/2 instead of 2t

Let d̂ = 2t+1/2 (estimate of d output by algorithm)
Let a be the smallest integer such that 2a+1/2 ≥ 3d

Pr[d̂ ≥ 3d] = Pr[t ≥ a]

= Pr[Ya > 0]

≤ d

2a

≤
√

2

3

Let b be the largest integer such that 2b+1/2 ≤ d
3

3-4

Pr[d̂ ≤ d

3
] = Pr[t ≤ b]

= Pr[Yb+1 = 0]

≤ 2b+1

d

=
2b+1/2

d
·
√

2

≤
√

2

3

So returning 2t+1/2 instead of 2t allows us to get a slightly tighter bound. (3d rather than somewhere around
4d-5d)

When running the algorithm we’ll get an estimate within the bounds d
3 ≤ d̂ ≤ 3d with strictly more than 50%

probability. To increase this probability to 1-δ we must run log(1
δ) independent instances of the algorithm

and return the median of the estimates.

Definition of 2-Universal

Let X and Y be finite sets.

Let Y X be the set of all functions from X to Y .

H ⊆ Y X is said to be 2-universal if for all x, x′ ∈ X(x 6= x′) and y, y′ ∈ Y

Pr[h(x) = y ∧ h(x′) = y′] =
1

|Y 2|

Pr[h(x) = y] =
1

|Y |

Pr[h(x′) = y′] =
1

|Y |

Choosing a Hash Function
Now we’ll look at how we can pick the random hash function h : [n]→ [n].

Each j ∈ [n] can be represented as a length t 0-1 vector. So if t = 4, j might be
1
0
1
1

One choice of hash function might be a h(x) = Ax+ b where A is a t× t matrix and b is a length t vector.

3-5

h(x) =

A11 A12 ... A1t

A21 A22 ... A2t

...
At1 At2 ... Att

x1
x2
...
xt

 +

b1
b2
...
bt

The hash function h is fixed if you know A and b. You can randomly select A and b by randomly selecting
each element of A and b to be 0 or 1 with equal probability.

It takes log2n bits to remember this hash function.

A family of hash functions can be created by taking every possible combination of A and b. We can then
select one function from this family at random for our algorithm.

Homework Problem: (Source: Problem 2-1, Lecture 2, Amit Chakrabarh)

Treat the elements of X and Y as column vectors with 0/1 entries. For a matrix A ∈ {0, 1}k×n and vector
b ∈ {0, 1}k, define the function hA,b : X → Y by hA,b(x) = Ax + b, where all additions and multiplications
are performed mod2.
Prove that the family of functions H = {hA,b : A ∈ {0, 1}k×n, b ∈ {0, 1}k} is 2-universal.

Another Streaming Problem: Finding Frequent Elements

Let the stream be σ =< a1, a2, ..., am > where each ai ∈ [n]

In practice stream elements can be any type of object. We assume that we can hash any of these objects to
an integer for the purposes of our algorithm.

We define f = (f0, f1, ..., fn−1) where fi is the frequency of i in the stream for some i.

Given ε > 0, we want to identify all j such that fj ≥ ε ·m

The Misra-Gries Algorithm

First we’ll give a deterministic algorithm for finding an estimate f̂a of the frequency fa for some a.

We’ll maintain a dictionary A where the keys of A = [n].

For a key j, A[j] is an estimate for fj .

We don’t want to maintain a dictionary with all n keys so we’ll restrict ourselves to some k keys.

3-6

1: Initialize empty dictionary A
2: Pick k
3: if ai ∈ keys(A) then
4: A[ai]← A[Ai] + 1
5: else if |keys(A)| < k − 1 then
6: A[ai]← 1
7: else
8: for each ` ∈ keys(A) do
9: A[`]← A[`]− 1

10: if A[`] = 0 then
11: Remove ` from A
12: return On query a if a ∈ keys(A) report f̂a = A[a] else f̂a = 0

Claim: For each j ∈ [n]

fj −
m

k
≤ f̂j ≤ fj

where d is the number of unique elements in the stream.

Let α be the number of times we subtract 1 from the estimated frequency of j. Each time we subtract 1
from the estimated frequency of j we subtract 1 from the estimate of k − 1 other elements.
Thus

α · k ≤ m

As a consequence of this,

If k = 2
ε then

fj −
ε ·m

2
≤ f̂j ≤ fj

If fj ≥ ε ·m then

f̂j ≥
fj
2
≥ ε ·m

2

3-7

Turnstile Model
Let σ =< a1, a2, ..., am > be our stream.

Each ai is a pair (j, c) where j ∈ [n] and c is an integer. (positive or negative)

An element fi of the frequency vector f is the sum of all c’s in each pair (j, c) in σ for which j = i.

This ”turnstile model” is a generalized version of the previous model. In the previous model c is always 1.

We want to find the highest fi in f . For now we’ll assume that all elements of the frequency vector f will
always be non-negative.

1: C[1...k]← [0, 0, ..., 0]
2: Choose a random hash function h : [n]→ [k]
3: Choose a random hash function g : [n]→ {−1,+1}
4: for each ai = (j, c) ∈ σ do
5: C[h(j)]← C[h(j)] + c · g(j)

6: return On query a report f̂a = g(a) · C[h(a)]

In the analysis of this algorithm we’ll want to show E[f̂a] = fa

