Lecture $13 \& 14$: Estimating the number of distinct elements in a stream.

Lecturer: Kasturi Varadarajan

In the last lecture, we looked at an algorithm for approximating the number of elements in a stream.

Algorithm:

Let a be a stream of d elements.
For any integer $p>=0$, Let $\operatorname{zeroes}(p)$ be the maximum element in the set $\left\{i \mid 2^{i}\right.$ divides $\left.p\right\}$

```
Pick a random hash function \(h:[n] \rightarrow[n]\) from a 2-universal family.
\(Z \leftarrow 0\)
for each \(a_{i}\) in the stream do
        if \(\operatorname{zerores}\left(h\left(a_{i}\right)\right)>Z\) then
        \(Z \leftarrow \operatorname{zeroes}\left(h\left(a_{i}\right)\right)\)
return \(2^{Z+1 / 2}\)
```


Analysis:

For the analysis we'll need to introduce two types of random variables, $X_{r, j}$ and Y_{r}.

$$
\begin{gathered}
X_{r, j}=1 \text { if zeroes }(h(j))>=r \\
X_{r, j}=0 \text { otherwise }
\end{gathered}
$$

The only randomness for $X_{r, j}$ comes from the choice of hash function $h:[n] \rightarrow[n]$ $x_{r, j}$ is a random variable with respect to that space.

$$
Y_{r}=\sum_{j: f_{j}>0} X_{r, j}
$$

where f_{j} is the frequency of j.

Example:

Let our stream be $a=\{17,2,3,17,2,5,7,5\}$

j	$z \operatorname{eroes}(h(j))$
2	0
17	3
3	1
5	1
7	2

So $Y_{0}=5$ because $\operatorname{zeroes}(h(j))>=0$ for all 5 elements, similarly

$$
\begin{aligned}
Y_{1} & =4 \\
Y_{2} & =2 \\
Y_{3} & =1 \\
Y_{4} & =0 \\
Y_{5} & =0 \\
& \ldots \\
Y_{r>3} & =0
\end{aligned}
$$

Claim

Let t denote the value of Z at the end of the execution of the algorithm.

$$
\begin{gathered}
Y_{r}>0 \Longleftrightarrow t \geq r \\
Y_{r}=0 \Longleftrightarrow t \leq r-1
\end{gathered}
$$

We want to find $E\left[Y_{r}\right]$ for some fixed r .

$$
\begin{aligned}
E\left[Y_{r}\right] & =\sum_{j: f_{j}>0} E\left[X_{r, j}\right] \\
& =\sum_{j} \operatorname{Pr}\left[X_{r, j}=1\right] \\
& =\sum_{j} \operatorname{Pr}\left[2^{r} \text { divides } h(j)\right] \\
& =\sum_{j} \frac{1}{2 r} \\
& =\frac{d}{2 r}
\end{aligned}
$$

One way we can think of this is that every element will contribute to Y_{0}, an element will contribute to Y_{1} with a probability of $\frac{1}{2}$, an element will contribute to Y_{2} with a probability of $\frac{1}{4}$, etc. That is,

$$
\begin{gathered}
\operatorname{Pr}\left[X_{0, j}=1\right]=1 \\
\operatorname{Pr}\left[X_{1, j}=1\right]=\frac{1}{2} \\
\operatorname{Pr}\left[X_{2, j}=1\right]=\frac{1}{4} \\
\text { etc. }
\end{gathered}
$$

Because of this $2^{r} \cdot Y_{r}$ is a good estimator for d. Assuming any two variables are independent,

$$
\begin{aligned}
\operatorname{Var}\left[Y_{r}\right] & =\sum_{j} \operatorname{Var}\left[X_{r, j}\right] \\
& \leq \sum_{j} E\left[\left(X_{r, j}\right)^{2}\right]\left(\text { Because } \operatorname{Var}(z)=E\left(z^{2}\right)-E(z)^{2}\right) \\
& =\sum_{j} E\left[X_{r, j}\right]\left(\text { Because } X_{r, j} \text { is a } 01 \text { random variable. }\right) \\
& =\frac{d}{2^{r}} \\
\operatorname{Pr}\left[Y_{r}>0\right] & =\operatorname{Pr}\left[Y_{r} \geq 1\right] \\
& \leq E\left[Y_{r}\right] \\
& =\frac{d}{2^{r}} \\
\operatorname{Pr}\left[Y_{r}=0\right] & \leq \operatorname{Pr}\left[\left|Y_{r}-E\left[Y_{r}\right]\right| \geq \frac{d}{2 r}\right] \\
& \leq \frac{\operatorname{Var}\left[Y_{r}\right]}{\left(d / 2^{r}\right)^{2}}\left(\text { By Chebyshev }{ }^{\prime} \text { s inequality }\right) \\
& \leq \frac{2^{r}}{d}
\end{aligned}
$$

So the transition from Y_{r} going from 0 to nonzero happens around $r=\log (d)$

We now want to show why we output $2^{t+1 / 2}$ instead of 2^{t}
Let $\hat{d}=2^{t+1 / 2}$ (estimate of d output by algorithm)
Let a be the smallest integer such that $2^{a+1 / 2} \geq 3 d$

$$
\begin{aligned}
\operatorname{Pr}[\hat{d} \geq 3 d] & =\operatorname{Pr}[t \geq a] \\
& =\operatorname{Pr}\left[Y_{a}>0\right] \\
& \leq \frac{d}{2^{a}} \\
& \leq \frac{\sqrt{2}}{3}
\end{aligned}
$$

Let b be the largest integer such that $2^{b+1 / 2} \leq \frac{d}{3}$

$$
\begin{aligned}
\operatorname{Pr}\left[\hat{d} \leq \frac{d}{3}\right] & =\operatorname{Pr}[t \leq b] \\
& =\operatorname{Pr}\left[Y_{b+1}=0\right] \\
& \leq \frac{2^{b+1}}{d} \\
& =\frac{2^{b+1 / 2}}{d} \cdot \sqrt{2} \\
& \leq \frac{\sqrt{2}}{3}
\end{aligned}
$$

So returning $2^{t+1 / 2}$ instead of 2^{t} allows us to get a slightly tighter bound. (3d rather than somewhere around 4d-5d)

When running the algorithm we'll get an estimate within the bounds $\frac{d}{3} \leq \hat{d} \leq 3 d$ with strictly more than 50% probability. To increase this probability to $1-\delta$ we must run $\log \left(\frac{1}{\delta}\right)$ independent instances of the algorithm and return the median of the estimates.

Definition of 2-Universal

Let X and Y be finite sets.
Let Y^{X} be the set of all functions from X to Y.
$\mathcal{H} \subseteq Y^{X}$ is said to be 2-universal if for all $x, x^{\prime} \in X\left(x \neq x^{\prime}\right)$ and $y, y^{\prime} \in Y$

$$
\begin{gathered}
\operatorname{Pr}\left[h(x)=y \wedge h\left(x^{\prime}\right)=y^{\prime}\right]=\frac{1}{\left|Y^{2}\right|} \\
\operatorname{Pr}[h(x)=y]=\frac{1}{|Y|} \\
\operatorname{Pr}\left[h\left(x^{\prime}\right)=y^{\prime}\right]=\frac{1}{|Y|}
\end{gathered}
$$

Choosing a Hash Function

Now we'll look at how we can pick the random hash function $h:[n] \rightarrow[n]$.
Each $j \in[n]$ can be represented as a length $t 0-1$ vector. So if $t=4, j$ might be

One choice of hash function might be a $h(x)=A x+b$ where A is a $t \times t$ matrix and b is a length t vector.

$$
h(x)=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 t} \\
A_{21} & A_{22} & \ldots & A_{2 t} \\
\ldots & \ldots & \ldots & \ldots \\
A_{t 1} & A_{t 2} & \ldots & A_{t t}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{t}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{t}
\end{array}\right]
$$

The hash function h is fixed if you know A and b. You can randomly select A and b by randomly selecting each element of A and b to be 0 or 1 with equal probability.

It takes $\log ^{2} n$ bits to remember this hash function.

A family of hash functions can be created by taking every possible combination of A and b. We can then select one function from this family at random for our algorithm.

Homework Problem: (Source: Problem 2-1, Lecture 2, Amit Chakrabarh)
Treat the elements of X and Y as column vectors with $0 / 1$ entries. For a matrix $A \in\{0,1\}^{k \times n}$ and vector $b \in\{0,1\}^{k}$, define the function $h_{A, b}: X \rightarrow Y$ by $h_{A, b}(x)=A x+b$, where all additions and multiplications are performed mod2.
Prove that the family of functions $\mathcal{H}=\left\{h_{A, b}: A \in\{0,1\}^{k \times n}, b \in\{0,1\}^{k}\right\}$ is 2-universal.

Another Streaming Problem: Finding Frequent Elements

Let the stream be $\sigma=<a_{1}, a_{2}, \ldots, a_{m}>$ where each $a_{i} \in[n]$
In practice stream elements can be any type of object. We assume that we can hash any of these objects to an integer for the purposes of our algorithm.

We define $f=\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ where f_{i} is the frequency of i in the stream for some i.
Given $\epsilon>0$, we want to identify all j such that $f_{j} \geq \epsilon \cdot m$

The Misra-Gries Algorithm

First we'll give a deterministic algorithm for finding an estimate \hat{f}_{a} of the frequency f_{a} for some a.
We'll maintain a dictionary A where the keys of $A=[n]$.
For a key $j, A[j]$ is an estimate for f_{j}.
We don't want to maintain a dictionary with all n keys so we'll restrict ourselves to some k keys.

```
Initialize empty dictionary \(A\)
Pick \(k\)
if \(a_{i} \in \operatorname{keys}(A)\) then
    \(A\left[a_{i}\right] \leftarrow A\left[A_{i}\right]+1\)
else if \(\mid\) keys \((A) \mid<k-1\) then
    \(A\left[a_{i}\right] \leftarrow 1\)
else
    for each \(\ell \in \operatorname{keys}(A)\) do
        \(A[\ell] \leftarrow A[\ell]-1\)
        if \(A[\ell]=0\) then
            Remove \(\ell\) from \(A\)
return On query \(a\) if \(a \in \operatorname{keys}(A)\) report \(\hat{f}_{a}=A[a]\) else \(\hat{f}_{a}=0\)
```

Claim: For each $j \in[n]$

$$
f_{j}-\frac{m}{k} \leq \hat{f}_{j} \leq f_{j}
$$

where d is the number of unique elements in the stream.
Let α be the number of times we subtract 1 from the estimated frequency of j. Each time we subtract 1 from the estimated frequency of j we subtract 1 from the estimate of $k-1$ other elements.
Thus

$$
\alpha \cdot k \leq m
$$

As a consequence of this,
If $k=\frac{2}{\epsilon}$ then

$$
f_{j}-\frac{\epsilon \cdot m}{2} \leq \hat{f}_{j} \leq f_{j}
$$

If $f_{j} \geq \epsilon \cdot m$ then

$$
\hat{f}_{j} \geq \frac{f_{j}}{2} \geq \frac{\epsilon \cdot m}{2}
$$

Turnstile Model

Let $\sigma=<a_{1}, a_{2}, \ldots, a_{m}>$ be our stream.
Each a_{i} is a pair (j, c) where $j \in[n]$ and c is an integer. (positive or negative)
An element f_{i} of the frequency vector f is the sum of all c 's in each pair (j, c) in σ for which $j=i$.
This "turnstile model" is a generalized version of the previous model. In the previous model c is always 1 .
We want to find the highest f_{i} in f. For now we'll assume that all elements of the frequency vector f will always be non-negative.

```
\(C[1 \ldots k] \leftarrow[0,0, \ldots, 0]\)
Choose a random hash function \(h:[n] \rightarrow[k]\)
Choose a random hash function \(g:[n] \rightarrow\{-1,+1\}\)
for each \(a_{i}=(j, c) \in \sigma\) do
    \(C[h(j)] \leftarrow C[h(j)]+c \cdot g(j)\)
    return On query \(a\) report \(\hat{f}_{a}=g(a) \cdot C[h(a)]\)
```

In the analysis of this algorithm we'll want to show $E\left[\hat{f}_{a}\right]=f_{a}$

