
CS:4980:0002 Algorithmic Excursions Spring 2016
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Lecturer: Kasturi Varadarajan Scribe: Richard Blair

11.1 Items from last week’s lectures

11.1.1 k-means and k-median

There are algorithms that can find a (1 + ε)-approximation in O(nd exp(Rd )) time.

Term paper topics:

• ”Guess centers” problem

• Coresets: Approximate the input by a ”coreset” and run a more expensive algorithm on the coreset.

For k-median there exists an algorithm to obtain a (1 + ε)-approximation in time O(poly(n, k)). It is a
long-standing open problem whether such an algorithm exists for k-means.

11.2 Streaming algorithms: counting events in sublinear space

The course site of Algorithms for Big Data by Jelani Nelson of Harvard University is a good resource for
information about many of these algorithms.

Problem: Suppose some events are happening, and we are notified of events when they happen. We want
to count the number of events that have happened.

Trivial solution: Maintain a counter, and increment it for each event. The space we use to keep track of
n events is ≈ log n. Let us see if we can do better. Given 0 < ε, δ < 1, we would like to keep an estimate n̄
such that

Pr[|n̄− n| > εn] < δ

This question was first considered by Morris in a 1978 paper in Communications of the ACM [MO78].

Morris’ algorithm:

1. Initialize X ← 0.

2. For each event, increment X with probability 1
2X .

3. Output n̄ = 2X − 1.
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Why does this work?

Let Xn denote X after n events.

Certainly

• X0 = 0.

• X1 = 1

• X2 = 1 with probability 1
2 and X2 = 2 with probability 1

2

• We also have Pr[X3 = 1] = 1
4 , Pr[X3 = 2] = 5

8 , Pr[X3 = 3] = 1
8 .

What is E[2X2 ]?

E[2X2 ] = 1
2 · 2

1 + 1
2 · 2

2 = 1 + 2 = 3. So E[n̄]=2.

Similarly we obtain

E[2X3 ] =
1

4
· 2 +

5

8
· 22 +

1

8
· 23

=
1

2
+

5

2
+ 1

= 4

Lemma 11.1 E[2Xn ] = n+ 1.

Proof: The proof is by induction. The base case concerns E[2X0 ]. E[2X0 ] = 20 · Pr[X0 = 0] = 1 · 1 = 2, so
the base case holds for n = 0. Let us now assume E[2Xn ] = n+ 1. Now, we have

E[2Xn+1 ] =

∞∑
j=0

Pr[Xn = j] · E[2Xn+1 | Xn = j]

=

∞∑
j=0

Pr[Xn = j] ·
((

1− 1

2j

)
· 2j +

1

2j
· 2j+1

)

=

∞∑
j=0

Pr[Xn = j] ·
(
2j − 1 + 2

)
=

∞∑
j=0

Pr[Xn = j] · 2j +

∞∑
j=0

Pr[Xn = j]

= E[2Xn ] + 1

Homework problem: Show that V ar(n̄) := E[(n̄ − n)2] is at most n2

2 , by showing that E[22Xn ] =
3
2n

2 + 3
n + 1.

Chebyshev’s inequality yields the bound

Pr[|n̄− n| > t] <
V ar(n̄)

t2
≤ n2

2t2

We would like to improve on this bound.



Lecture 11 & 12: February 25, 2016 11-3

11.2.1 Morris+

Consider a new algorithm.

Morris+:

1. Instantiate s copies of Morris.

2. Let n̄i be the estimate given by the ith copy.

3. Return the estimate of Morris+, n̂ = 1
s

∑s
i=1 n̄i

Note that V ar(n̂) = V ar(n̄)
s by the independence of the copies of Morris.

Chebyshev’s inequality now yields

Pr[|n̂− n| > t] <
V ar(n̄)

t2
≤ n2

2st2
.

To get the bound we wanted, substitute εn for t. Then

Pr[|n̂− n| > εn] ≤ n2

2sε2n2
=

1

2sε2
.

Example: if we have δ = 1
3 , then we need s ≥ 3

2ε2 . If δ be chosen, then s ≥ 1
2δε2 .

It is possible to improve on this even further, with the following:

Morris++: Run t copies of Morris+ and return the median of the t estimates.

One can apply the Chernoff bound to show that the total number of copies of Morris necessary in the
Morris++ algorithm to obtain the guarantee

Pr[|n̂− n| > εn] ≤ δ

is O
(
log log n · 1

ε2 · log 1
δ

)
.

To this end, define 0-1 random variables Yi thus:

Yi =

{
1 if ith Morris+ fails

0 otherwise

Now, E[Y ] =
∑
iE[Yi], by linearity of expectation.

Since we have a sum of independent random variables, we may apply a special case of the Chernoff bound
for a collection of i.i.d. 0-1 random variable to obtain

Pr [|Y − E[Y ]| > λE[Y ]] ≤ 2

eλ2E[Y ]/3
.

Since we are using the ”median trick”, and Morris++ fails only in the case that at least t
2 , Morris+ copies

fail, we have

Pr [Morris++ fails] ≤ Pr

[
Y ≥ t

2

]
≤ Pr

[
|Y − E[Y ]| > t

6

]
.
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So we plug in λE[Y ] = t
6 , which gives λ ≥ 1

2 .

We then have

Pr [|Y − E[Y ]|] ≤ 2

e
t
6 ·

1
2 ·

1
3

= 2e−
t
36 .

If we want this bound to be less than δ, take

t = c · log
1

δ
.

The space needed by Morris++ is thus O
(
log log n · 1

ε2 · log 1
δ

)
.

11.3 Streaming algorithms: Estimating the number of distinct
elements in a stream

First we shall introduce some notation. We shall write [n] to denote the set 0, 1, . . . , n− 1.

We will consider the situation in which there is a stream σ = 〈a1, a2, . . . , am〉 with each ai ∈ [n]. Now n is
known in advance, but σ is not.

Example: σ = 〈23, 12, 7, 23, 9, 7, 16, 7〉. There are here 5 distinct elements in 8 elements.

Now, define fi := |{j | aj = i}|, i.e. the frequency of i.

Let f := (f0, f1, . . . , fn−1), i.e., a vector of all frequencies of elements of [n].

Let d := |{j | fj > 0}|

Our goal now is to output an (ε, δ)-approximation d̄, that is, output a d̄ such that

Pr
[∣∣d− d̄∣∣ > εd

]
≤ δ.

Another good resource for this topic is the set of lecture notes Data Stream Algorithms by Amit Chakrabarti
of Dartmouth College [AC15].

Sublinear space for this estimator is not attainable if ε = 0 or δ = 0.

Homework: Read the literature and explore why this is so.

We shall now pick a hash function h : [n] → [0, 1]. Imagine it is uniformly random. Intuitively, the more
distinct elements are in our stream, the smaller the minimum value of our hash function on the stream should
be. If the minimum = α, the estimate is 1

α .

For an integer p ≥ 0, let zeroes(p) be the maximum element in the set
{
i ∈ N | 2i divides p.

}
.

zeroes(2) = 1
zeroes(3) = 0
zeroes(12) = 2

Now assume n is a power of 2.

The following is our algorithm.
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Data: A stream σ = 〈a1, a2, . . . , am〉
Result: An estimate d̄ of the number of distinct elements in the stream
Choose a random hash function h : [n]→ [n] from a 2-universal family of hash functions.
z ← 0
for each element ai of the stream do

if zeroes(h(ai)) > z then
z ← zeroes(h(ai))

end

end

return 2z+
1
2

Algorithm 1: Counting distinct elements in sublinear space

Now, fix j ∈ [n], and fix an integer k.

What is Pr [zeroes(h(j)) > k]?

This is equal to Pr
[
2k divides h(j)

]
, by definition, and

Pr
[
2k divides h(j)

]
=

1

2k
.

Set k = log d. Then

Pr
[
2log d divides h(j)

]
= log

1

d
.

There is a fair chance that zeroes(h(j)) ≥ log d for at least one j. Also, the chance that zeroes(h(j))� log d
for at least one j is quite small. Next time shall see if we can bound the probability that d̄ is very far from
d.
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