Lecture $7 \& 8$: Term Paper Topics and Clustering

Lecturer: Kasturi Varadarajan

Application and Term Paper Topics:

Hint: topics with * are only recommended to students with special background

Topic 1: ϵ-net : cutting, partition and geometric set cover.
Topic 2*: Guarantee size of ϵ-net with VC-dimension as d to $\frac{d}{\varepsilon} \log \frac{1}{\varepsilon}$.
Topic 3*: Improvements for Geometric set systems
Example 1: Points + Half planes in this system you can get ϵ-net of size $O\left(\frac{1}{\varepsilon}\right)$.
Example 2: the same happens to Points + Half spaces in \mathcal{R}^{3} system.
Example 3: Fat triangles + Stabbing in \mathcal{R}^{2} system -focusing on the set of triangles, pick a point, the triangles that content this point will be in the subset- for this system, will get $O\left(\frac{1}{\varepsilon} \log \left(\log \frac{1}{\varepsilon}\right)\right)$.
Topic 4: However, improvement is not possible in general, such as Points + Half spaces in \mathcal{R}^{4}, Rectangles or Normal triangles(not fat) in $\mathcal{R}^{2}+$ stabbing, they only could get $\Omega\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$.
Topic 5: Suppose (X, \mathcal{R}), where $|X|=|\mathcal{R}|=n$, Disc: $\sqrt{n \log n}$ can be improved to \sqrt{n}.
Topic 6*: If Shatter function of (X, \mathcal{R}) is bounded by $C \times m^{d}$ for constants c and d, discrepancy can be improve to $n^{\frac{1}{2}-\frac{1}{2} d}$ Example: Points + Half planes with shatter function $\leqslant m^{2}$, then $n^{\frac{1}{2}-\frac{1}{4}}=n^{\frac{1}{4}}$.

Topic 7^{*} : This yields improved ϵ-approximations: -Application of ϵ ps-approximation to Core Sets (going to talk about later) -VC-dimension, ϵ ps-approximation in learning(topic)

Topic 8: Bounding VC-dimension and shatter function for Geometric set systems
Topic 9*: Sampling to preserve other kinds of stuff Example: Cut specification in Graphs.(Sample Graph need to preserve some information in Graphs)

Topic 10: Deterministic construction of $\epsilon \mathrm{ps}$-approximation

Clustering - Chapter 4 in Geometric Approximation Algorithms

Definition 3.1 Suppose we are given a set of points, and a distance function : d:P×P(two points) \longrightarrow \mathcal{R}^{+}(real number) that defines a metric:

- $d(p, q)=0$, if and only if $p=q$
- $d(p, q)=d(q, p)$
- $d(p, \gamma) \leqslant d(p, q)+d(q, \gamma)$

Notation: For $P^{\prime} \subseteq P, d\left(P^{\prime}, q\right)=\min _{p \in P^{\prime}} d(p, q)$

```
C1}\leftarrow\mathrm{ any point in P
for }i\leftarrow2\mathrm{ to }n\mathrm{ do
    \mp@subsup{\gamma}{i-1}{*}\leftarrow\mp@subsup{\operatorname{max}}{q\inP}{}d({\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},\ldots,\mp@subsup{C}{i-1}{}},q)
    Ci}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{max}}{q\inP}{}d({\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},\ldots,\mp@subsup{C}{i-1}{}},q
return }\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},\ldots,\mp@subsup{C}{n}{
```

Suppose γ_{5} is the furthest distance between points in $P \backslash\left\{C_{1}, \ldots, C_{5}\right\}$ to $\left\{C_{1}, \ldots, C_{5}\right\}$ which return from the algorithm. Then if we use $\left\{C_{1}, \ldots, C_{5}\right\}$ as centers and γ_{5} as radius to make balls, the balls will content all the points in the point set, the balls could partition the points into clusters. Since $\left\{C_{1}\right\} \subseteq C_{1}, C_{2} \subseteq \ldots$ $\subseteq\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$, then $\gamma_{1} \geqslant \gamma_{2} \geqslant \cdots \geqslant \gamma_{n-1}$ and we define $\gamma_{n}=0$.

Definition 3.2 A set $\mathcal{Q} \subseteq P$ is called an γ-packing if the following properties holds:

- Covering Property: For any $p \in P, d(\mathcal{Q}, p) \leqslant \gamma$
- Separation Property: For any $p_{1}, p_{2} \in \mathcal{Q}, d\left(p_{1}, p_{2}\right) \geqslant \gamma$

We claim $\left\{C_{1}, \ldots, C_{5}\right\}$ is an γ_{5}-packing, and for any $1 \leqslant k \leqslant n,\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ is an γ_{k}-packing.
Homework: Proof the conclusion above.

Definition $3.3 k$-Center Clustering:

Given P and $1 \leqslant k \leqslant|P|$, compute a set $C \subseteq P$ with k points, So as to minimize:

$$
\begin{equation*}
\lambda(C):=\max _{q \in P} d(C, q) \tag{3.1}
\end{equation*}
$$

Alternatively, find the minimum λ_{*} such that there exist k balls of radius λ_{*} that "Cover" P.
Time expensive of this clustering method is $O\left(k^{2} n\right)$

Claim 3.4 Let $C_{1}, C_{2}, \ldots, C_{n}$ be a greedy permutation of P (Selected by the algorithm above, which C_{1} is any point and C_{2} is the furthest point to $\left\{C_{1}\right\}$ and so on.) For any k, and any \mathcal{C} with k points, $\lambda\left(\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}\right)$ $\leqslant 2 \lambda(\mathcal{C})$

As we regard $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ as center of clusters and γ_{k} as the radius of each cluster, this is a clustering solution, which is not the best, but a OK solution. $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ is a γ_{k}-rpacking.

Proof: This is obvious if $\mathrm{k}=|P|$.
$\operatorname{For}\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$
$\gamma_{1} \geqslant \quad \gamma_{2} \geqslant \quad \ldots \geqslant \quad \gamma_{k-1} \geqslant$
$d\left(\left\{C_{1}\right\}, C_{2}\right) \geqslant d\left(\left\{C_{1}, C_{2}\right\}, C_{3}\right) \geqslant \quad \ldots \geqslant d\left(\left\{C_{1}, C_{2}, \ldots, C_{k-1}\right\}, C_{k}\right)$
And $\lambda\left(\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}\right)=\gamma_{k}$ From Algorithm
γ_{k} is the furthest distance of a point to set $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$
Fix C with k points, we'll show $\lambda(\mathcal{C}) \geqslant \frac{\gamma_{k}}{2}$
Map each point in $\left\{C_{1}, C_{2}, \ldots, C_{k+1}\right\}$ to the nearest point in \mathcal{C} There exists two points C_{i} and C_{j}, that are mapped to some point $\bar{C} \in \mathcal{C}$

$$
\gamma_{k} \leqslant d\left(C_{i}, C_{j}\right) \leqslant d\left(C_{i}, \bar{C}\right)+d\left(C_{j},(\bar{C})\right) \leqslant \lambda(\mathcal{C})+\lambda(\mathcal{C}) \Rightarrow \lambda(\mathcal{C}) \geqslant \frac{\gamma_{k}}{2}
$$

Definition 3.5 K-median Clustering: Given P, metric d and $1 \leqslant k \leqslant|P|$, find a set \mathcal{C} of k points that minimize:

$$
\operatorname{cost}(\mathcal{C}) \equiv \sum_{q \in P} d(q, \mathcal{C})
$$

```
* \(k\)-center algorithm clustering is very easy to be influenced by noise
    \(\mathcal{C} \leftarrow\) any subset of size k
    while there exist \(\bar{c} \in \mathcal{C}\) and \(p \in P \backslash \mathcal{C}\) such that \(\operatorname{cost}(\mathcal{C}-\bar{c}+p)<\operatorname{cost}(\mathcal{C})\) do
        \(\mathcal{C} \leftarrow \mathcal{C}-\bar{c}+p\)
    return \(\mathcal{C}\)
```

Homework: Show an example where the above algorithm fails to com up with optimal solution.

Notation:

$L-$ Solution returned by local search
$C_{o p t}-$ optimal solution

We'll show $\operatorname{cost}(L) \leqslant 5 \operatorname{cost}\left(C_{o p t}\right)$

