
Algorithmic Excursions: Topics in Computer Science II Spring 2016

Lecture 7 & 8 : Term Paper Topics and Clustering
Lecturer: Kasturi Varadarajan Scribe: Jianshu Zhang

Application and Term Paper Topics:
Hint: topics with * are only recommended to students with special background

Topic 1: ε-net : cutting, partition and geometric set cover.

Topic 2*: Guarantee size of ε-net with VC-dimension as d to d
ε log 1

ε .

Topic 3*: Improvements for Geometric set systems
Example 1: Points + Half planes in this system you can get ε-net of size O( 1

ε ).
Example 2: the same happens to Points + Half spaces in R3 system.
Example 3: Fat triangles + Stabbing in R2 system –focusing on the set of triangles, pick a point, the
triangles that content this point will be in the subset– for this system, will get O( 1

ε log(log 1
ε )).

Topic 4: However, improvement is not possible in general, such as Points + Half spaces in R4, Rectangles
or Normal triangles(not fat) in R2 + stabbing, they only could get Ω( 1

ε log 1
ε ).

Topic 5: Suppose (X,R), where |X| = |R| = n, Disc:
√
n log n can be improved to

√
n.

Topic 6*: If Shatter function of (X,R) is bounded by C ×md for constants c and d, discrepancy can be

improve to n
1
2−

1
2d Example: Points + Half planes with shatter function 6 m2, then n

1
2−

1
4 = n

1
4 .

Topic 7*: This yields improved ε-approximations: –Application of εps-approximation to Core Sets (going
to talk about later) –VC-dimension, εps-approximation in learning(topic)

Topic 8: Bounding VC-dimension and shatter function for Geometric set systems

Topic 9*: Sampling to preserve other kinds of stuff Example: Cut specification in Graphs.(Sample Graph
need to preserve some information in Graphs)

Topic 10: Deterministic construction of εps-approximation

Clustering – Chapter 4 in Geometric Approximation Algorithms

Definition 3.1 Suppose we are given a set of points, and a distance function : d : P × P (two points) −→
R+(real number) that defines a metric:

• d(p, q) = 0, if and only if p = q

• d(p, q) = d(q, p)

• d(p, γ) 6 d(p, q) + d(q, γ)
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Notation: For P ′ ⊆ P , d(P ′, q) = min
p∈P ′

d(p, q)

1: C1 ← any point in P
2: for i← 2 to n do
3: γi−1 ← max

q∈P
d({C1, C2, . . . , Ci−1}, q)

4: Ci ← arg max
q∈P

d({C1, C2, . . . , Ci−1}, q)
5: return C1, C2, . . . , Cn

Suppose γ5 is the furthest distance between points in P \ {C1, . . . , C5} to {C1, . . . , C5} which return from
the algorithm. Then if we use {C1, . . . , C5} as centers and γ5 as radius to make balls, the balls will content
all the points in the point set, the balls could partition the points into clusters. Since {C1} ⊆ C1, C2 ⊆ . . .
⊆ {C1, C2, . . . , Cn}, then γ1 > γ2 > · · · > γn−1 and we define γn = 0.

Definition 3.2 A set Q ⊆ P is called an γ-packing if the following properties holds:

• Covering Property: For any p ∈ P , d(Q, p) 6 γ

• Separation Property: For any p1, p2 ∈ Q, d(p1, p2) > γ

We claim {C1, . . . , C5} is an γ5-packing, and for any 1 6 k 6 n, {C1, C2, . . . , Ck} is an γk-packing.
Homework: Proof the conclusion above.

Definition 3.3 k-Center Clustering:
Given P and 1 6 k 6 |P |, compute a set C ⊆ P with k points, So as to minimize:

λ(C) := max
q∈P

d(C, q) (3.1)

Alternatively, find the minimum λ∗ such that there exist k balls of radius λ∗ that ”Cover” P.
Time expensive of this clustering method is O(k2n)

Claim 3.4 Let C1, C2, . . . , Cn be a greedy permutation of P (Selected by the algorithm above, which C1 is any
point and C2 is the furthest point to {C1} and so on.) For any k, and any C with k points, λ({C1, C2, . . . , Ck})
6 2λ(C)

As we regard {C1, C2, . . . , Ck} as center of clusters and γk as the radius of each cluster, this is a clustering
solution, which is not the best, but a OK solution. {C1, C2, . . . , Ck} is a γk-rpacking.

Proof: This is obvious if k = |P |.

For{C1, C2, . . . , Ck}
γ1 > γ2 > . . . > γk−1 > γk ⇒

d({C1}, C2) > d({C1, C2}, C3) > . . . > d({C1, C2, . . . , Ck−1}, Ck)

And λ({C1, C2, . . . , Ck}) = γk From Algorithm



3-3

γk is the furthest distance of a point to set {C1, C2, . . . , Ck}
Fix C with k points, we’ll show λ(C) > γk

2

Map each point in {C1, C2, . . . , Ck+1} to the nearest point in C
There exists two points Ci and Cj , that are mapped to some point C̄ ∈ C

γk 6 d(Ci, Cj) 6 d(Ci, C̄) + d(Cj , ¯(C)) 6 λ(C) + λ(C) ⇒ λ(C) >
γk
2

Definition 3.5 K-median Clustering: Given P, metric d and 1 6 k 6 |P |, find a set C of k points that
minimize:

cost(C) ≡
∑
q∈P

d(q, C)

* k-center algorithm clustering is very easy to be influenced by noise

1: C ← any subset of size k
2: while there exist c̄ ∈ C and p ∈ P \ C such that cost(C − c̄ + p) < cost(C) do
3: C ← C − c̄ + p
4: return C

Homework: Show an example where the above algorithm fails to com up with optimal solution.

Notation:

L − Solution returned by local search

Copt − optimal solution

We’ll show cost(L) 6 5 cost(Copt)


