Lecture $5 \& 6: \varepsilon$-approximations, ε-nets from ε-approximations and the ε-net theorem

Lecturer: Kasturi Varadarajan

$3.1 \quad \varepsilon$-approximations and ε-nets via ε-approximations

Theorem 3.1 Suppose (X, R) has $V C$-dimension $d \geq 1$, and suppose that an ε is given where $0 \leq \varepsilon \leq 1$. Then (X, R) has an ε-approximation $A \subseteq X$ of size $O\left(\frac{d}{\varepsilon^{2}}\right) \ln (d / \varepsilon)$.

Proof: Assume that the size of the ground set is an integer power of 2 (as a homework problem try to prove this theorem without this assumption).

Let $X_{0}=X$. Construct X_{1}, \ldots, X_{t} as follows: For $0 \leq i \leq t-1$, let $X_{i+1} \subseteq X_{i}$ be such that:

- $\left|X_{i+1}\right|=\left|X_{i}\right| / 2$
- X_{i+1} is an ε_{i+1}-approximation of $\left(X_{i},\left.R\right|_{X_{i}}\right)$ where, (this can be done because of lemma 3.7 from the last lecture)

$$
\varepsilon_{i+1} \leq \frac{\sqrt{\left|X_{i}\right| \cdot \ln \left(\left.4 \cdot R\right|_{X_{i}}\right)}}{\left|X_{i}\right|}
$$

Since $\left(\left.R\right|_{X_{i}}\right) \leq\left|X_{i}\right|^{d}$

$$
\varepsilon_{i+1} \leq \frac{\sqrt{\left|X_{i}\right| \cdot \ln \left(4 \cdot\left|X_{i}\right|^{d}\right)}}{\left|X_{i}\right|}
$$

For some constant c

$$
\varepsilon_{i+1} \leq \sqrt{\frac{c \cdot d \cdot \ln \left(\left|X_{i}\right|\right)}{\left|X_{i}\right|}}
$$

Notice that X_{t} is a δ-approximation for (X, R) where $\delta=\varepsilon_{1}+\ldots \varepsilon_{t}$. Since the bounds on ε_{i} are geometrically increasing, we can bound the total error by a constant times the largest (last) error term. Thus, for absolute constants $c, c^{\prime \prime}$

$$
\delta \leq c^{\prime \prime} \cdot \sqrt{\frac{c \cdot d \cdot \ln \left(\left|X_{t-1}\right|\right)}{\left|X_{t-1}\right|}}
$$

The RHS will be at most ε provided $\left|X_{t-1}\right| \geq \alpha \cdot \frac{d}{\varepsilon^{2}} \ln (d / \varepsilon)$ for some constant α. We simply choose t to be the first integer for which $X_{t}<\alpha \cdot \frac{d}{\varepsilon^{2}} \ln (d / \varepsilon) . X_{t}$ is thus an ε-approximation.

We claim, however that we can do slightly better than this. The following claims are left as homework exercises.

Claim 3.2 If A is an $\varepsilon / 2$-approximation for (X, R) and A^{\prime} is an $\varepsilon / 2$-net for $\left(A,\left.R\right|_{A}\right)$ then A^{\prime} is an ε-net for (X, R).

Claim $3.3(X, R)$ with $V C$-dimension d has an ε-net of size $O(d / \varepsilon \ln (d / \varepsilon))$

3.2ε-net theorem and the double sampling proof

Theorem 3.4 (ε-net theorem, proved by Haussler-Welzl in '87) Suppose (X, R) has VC-dimension $2 \leq$ $d<\infty$, and suppose $0<\varepsilon<1 / 2$. Let N be a random sample of X of size $c \cdot d / \varepsilon \ln (d / \varepsilon)$ where c is a large constant. Then N is an ε-net with $\operatorname{Pr} \geq 1 / 2$.

Preliminaries Let $r=1 / \varepsilon, s=c \cdot d \cdot r \cdot \ln (r)$. We may assume that each $r^{\prime} \in R$ has $>\varepsilon|X|$ elements. Let E_{0} denote the event that $\exists r^{\prime} \in R$ such that $N \cap r^{\prime}=\phi$. Our goal is to show that $\operatorname{Pr}\left[E_{0}\right]<1 / 2$. Suppose that we pick another sample M of size s using the same sampling process. Let $k=s / 2 r$. Let E_{1} denote the event that $\exists r^{\prime} \in R$ such that $N \cap r^{\prime}=\phi$ and $\left|M \cap r^{\prime}\right| \geq k$. Since $E_{1} \subseteq E_{0}$, this means that $\operatorname{Pr}\left(E_{1}\right) \leq \operatorname{Pr}\left(E_{0}\right)$. We claim that

Claim 3.5 $\operatorname{Pr}\left[E_{0}\right] \leq 2 \operatorname{Pr}\left[E_{1}\right]$.

Proof: Lets condition on N. It suffices to show that

$$
\operatorname{Pr}\left[E_{0} \mid N\right] \leq 2 \operatorname{Pr}\left[E_{1} \mid N\right]
$$

First suppose that N is an ε-net (this means that $N \cap r^{\prime} \neq \phi \forall r^{\prime} \in R$). Then, clearly $\operatorname{Pr}\left[E_{0} \mid N\right]=0$ and $\operatorname{Pr}\left[E_{1} \mid N\right]=0$. Thus $\operatorname{Pr}\left[E_{0} \mid N\right] \leq 2 \operatorname{Pr}\left[E_{1} \mid N\right]$.

Now, suppose that N is an ε-net (this means that $\exists r^{\prime} \in R$ such that $N \cap r^{\prime}=\phi$). Clearly, $\operatorname{Pr}\left[E_{0} \mid N\right]=1$. We need to show that:
$\operatorname{Pr}\left[E_{1} \mid N\right] \geq \operatorname{Pr}[|M \cap r| \geq k] \geq 1 / 2$

Let $Y_{i}=1$ if the $i^{\text {th }}$ sample in M belongs to r^{\prime} and 0 otherwise. Since $\left|r^{\prime}\right|>\varepsilon|X|, E\left[Y_{i}\right]=\operatorname{Pr}\left[Y_{i}=1\right] \geq$ $1 / r=\varepsilon$.
Let $Y=\sum_{i=1}^{s} Y_{i}$. Note that $Y=\left|M \cap r^{\prime}\right|$. By linearity of expectations, $E[Y]=\sum_{i=1}^{s} E\left[Y_{i}\right] \geq s / r=2 k$. As a homework problem, argue using Chebyshev's inequality that $\operatorname{Pr}[\mathbf{Y} \leq \mathbf{k}]<\mathbf{1} / \mathbf{2}$. This means that $\operatorname{Pr}\left[E_{1} \mid N\right] \geq 1 / 2$. Thus $\operatorname{Pr}\left[E_{0} \mid N\right] \leq 2 \operatorname{Pr}\left[E_{1} \mid N\right]$. This completes the proof of Claim 6.1.

3.2.1 Double sampling:

Think of N and M as being produced in the following way:

- Pick a sample $A \subseteq X$ of size $2 s$.
- Pick a random subset of size s from A to form N.
- Let $M=A \backslash N$

To show that $\operatorname{Pr}\left[E_{1}\right] \leq 1 / 4$, we fix A and show that the probability $\operatorname{Pr}\left[E_{1} \mid A\right] \leq 1 / 4$. More specifically, for each $r^{\prime} \in R$, we will bound the following probability:

$$
\alpha \equiv \operatorname{Pr}\left[N \cap r^{\prime}=\phi \wedge\left|M \cap r^{\prime}\right| \geq k \mid A\right]
$$

Suppose that $\left|A \cap r^{\prime}\right|<k$, then α is simply 0 . Now, suppose that $\left|A \cap r^{\prime}\right| \geq k$. Then,

$$
\begin{aligned}
& \alpha \leq\left(1-\frac{k}{2 s}\right) \cdot\left(1-\frac{k}{2 s-1}\right) \ldots\left(1-\frac{k}{2 s-s+1}\right) \\
& \alpha \leq\left(1-\frac{k}{2 s}\right)^{s} \leq \exp \left(-\frac{k}{2 s} \cdot s\right) \\
& \alpha \leq \exp (-k / 2)=\frac{1}{\exp \left(\frac{c \cdot d}{4} \cdot \ln (r)\right)}=\frac{1}{r^{c d / 4}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{Pr}\left[E_{1} \mid A\right]=\operatorname{Pr}\left[\bigcup_{r^{\prime} \in R}\left[N \cap r^{\prime}=\phi \wedge\left|M \cap r^{\prime}\right| \geq k \mid A\right]\right] \\
& \operatorname{Pr}\left[E_{1} \mid A\right]=\operatorname{Pr}\left[\bigcup_{b \in R \mid A} \bigcup_{r^{\prime} \in R: A \cap r^{\prime}=b}\left[N \cap r^{\prime}=\phi \wedge\left|M \cap r^{\prime}\right| \geq k \mid A\right]\right]
\end{aligned}
$$

Using the union bound,

$$
\operatorname{Pr}\left[E_{1} \mid A\right] \leq \sum_{b \in R \mid A} \operatorname{Pr}\left[\bigcup_{r^{\prime} \in R: A \cap r^{\prime}=b}\left[N \cap r^{\prime}=\phi \wedge\left|M \cap r^{\prime}\right| \geq k \mid A\right]\right]
$$

For a specific b, the terms inside the union just refer to the same event. Thus we can use the bound from above,

$$
\begin{aligned}
& \operatorname{Pr}\left[E_{1} \mid A\right] \leq \sum_{b \in R \mid A} \frac{1}{r^{c d / 4}} \leq \phi_{d}(2 s) \cdot \frac{1}{r^{c d / 4}} \\
& \operatorname{Pr}\left[E_{1} \mid A\right] \leq\left(\frac{2 s \cdot e}{d}\right)^{d} \cdot \frac{1}{r^{c d / 4}} \\
& \operatorname{Pr}\left[E_{1} \mid A\right] \leq(2 c r e \ln (r))^{d} \cdot \frac{1}{r^{c d / 4}}
\end{aligned}
$$

We can chose c to be large enough so that,

$$
\operatorname{Pr}\left[E_{1} \mid A\right] \leq 1 / 4
$$

This means that $\operatorname{Pr}\left[E_{1}\right] \leq 1 / 4$. From Claim 6.1, $\operatorname{Pr}\left[E_{0}\right] \leq 2 \operatorname{Pr}\left[E_{1}\right] \leq 1 / 2$. This completes the proof of the ε-net theorem.

3.2.2 Paper topics:

Applications of ε-nets to set cover, load balancing and cuttings.

