
Algorithmic Excursions: Topics in Computer Science II Spring 2016

Lecture 3 & 4 : ε-net(contd.), ε-approximation and Discrepancy
Lecturer: Kasturi Varadarajan Scribe: Santanu Bhowmick

In the last lecture, we looked at a probabilistic proof of the following lemma, for which we now provide a
deterministic algorithm.

Lemma 3.1 Let S = (X,R) be a finite range space and 0 < ε < 1. Then S has an ε-net of size O( 1
ε ln |R|).

Proof: We construct a set N ⊆ X using the following algorithm.

1: R′ ← {r ∈ R | |r| > ε · |X|}.
2: N ← ∅.
3: while R′ 6= ∅ do
4: Pick x ∈ X that occurs in maximum number of ranges in R.
5: R′ ← R′ \ {r ∈ R′ | x ∈ r}.
6: N ← N ∪ {x}
7: return N

By construction, N is an ε-net as it has at least one element from each “sufficiently large” range i.e. ranges
having more than ε · |X| elements. We bound the size of N as follows.

Suppose |R′| = k at the beginning of a certain iteration. Each r ∈ R′ contains more than ε · |X| elements

by definition. We claim that there exists an element x ∈ X that is contained in at least ε·|X|
|X| · k ranges in

R′. (To see why, consider the directed bipartite graph G = (R′, X,E) where (r, x) ∈ E if x ∈ r. Each vertex
r ∈ R′ has at least ε · |X| outgoing edges, so the total outdegree from the set R′ is at least ε · |X| · k. The

average indegree of X is thus ε·|X|
|X| · k = ε · k. Hence, there exists at least one element in X with indegree

ε · k.) Thus, after the iteration of the while loop,

|R′| ≤ k − ε · k = (1− ε) · k

Homework: Show that the bound on the size of N in the lemma follows.

Lemma 3.2 Suppose S = (X,R) has VC-dimension d, and let ΠS be its shatter function. Then

ΠS(m) ≤
(
m

0

)
+

(
m

1

)
+

(
m

2

)
+ · · ·+

(
m

d

)
≡ φd(m)

Proof: Let Y ⊆ X be a finite subset with m elements. Then (Y,RY ) has VC-dimension at most d. It
suffices to show that if (X,R) is a finite range space with VC-dimension at most d and |X| = m, then
|R| ≤ φd(m). We prove the result by induction on m and d as follows.

Fix x ∈ X, and let R1 = RX\{x}. The range space (X \ {x},R1) has VC-dimension of at most d. So,
inductively, |R1| ≤ φd(m− 1).

Let R2 = {r ∈ R | x /∈ r, r ∪ {x} ∈ R}. The VC-dimension of (X \ {x},R2) is at most d − 1, and hence
|R2| ≤ φd−1(m− 1).
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Then,

|R| = |R1|+ |R2|
≤ φd(m− 1) + φd−1(m− 1)

= φd(m)

The last equality can be explained by the component-wise sum of the two terms φd(m−1) and φd−1(m−1),
as follows:

φd(m− 1) =

(
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)
+

(
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)
+
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)
+ . . . +

(
m− 1
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)
+

(
m− 1

d

)
φd−1(m− 1) =

(
m− 1

0

)
+

(
m− 1

1

)
+ . . . +

(
m− 1

d− 2

)
+

(
m− 1

d− 1

)

φd(m) =
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1

)
+
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+ . . . +
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)
+

(
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)

It follows that if |R| = O(|X|d), then ε-net size is O(dε log |X|).

Definition 3.3 Let S = (X,R) be a finite range space, and let 0 ≤ ε ≤ 1. A subset A ⊆ X is an ε-sample
(ε-approximation) if for any r ∈ R, ∣∣∣∣ |X ∩ r||X|

− |A ∩ r|
|A|

∣∣∣∣ ≤ ε
Lemma 3.4 If A is an ε-approximation, it is also an ε-net.

Proof: Let r ∈ R be a range having greater than ε · |X| elements. Then, |X∩r||X| > ε, and since A is an

ε-approximation, |A∩r||A| > 0 and thus A has non-zero intersection with range r.

Definition 3.5 Let S = (X,R) be a range space. Let χ : X → {−1,+1} be a coloring. We denote/define/say:

• For r ∈ R, let χ(r) ≡
∑
x∈r

χ(x).

• Discrepancy of χ over r ≡ |χ(r)|.

• Discrepancy of χ, disc(χ) ≡ max
r∈R
|χ(r)|.

• Discrepancy of S ≡ min
χ:X→{−1,+1}

disc(χ).

Definition 3.6 Suppose |X| is even, and Π is a partition of X into pairs. We can say that χ : X → {−1,+1}
is compatible with Π if for each {p, q} ∈ Π, either

• χ(p) = +1 and χ(q) = −1, or

• χ(q) = +1 and χ(p) = −1
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Lemma 3.7 Let S = (X,R) be a range space, and let Π be a partition of X into pairs. Let |X| = n, |R| = m.

Let χ be a random coloring compatible with Π. Then Pr
[
disc(χ) <

√
n · ln 4m

]
≥ 1

2 .

Proof: For range r ∈ R, let {x1, x2, . . . , xt} ⊆ r be those elements paired with an element not in r. Then

χ(r) = χ(x1) + χ(x2) + · · ·+ χ(xt)

is the sum of t independent random variables uniformly chosen from {−1,+1}. Hence, for any ∆ > 0, we
have the following by applying Chernoff bound,

Pr [χ(r) ≥ ∆] < e
−∆2

2t =
1

e
∆2

2t

Setting ∆ =
√

2t · ln 4m, we get Pr[χ(r) ≥
√

2t · ln 4m] < 1
eln 4m = 1

4m .

Since t ≤ n
2 ,

Pr
[
χ(r) ≥

√
n · ln 4m

]
≤ Pr

[
χ(r) ≥

√
2t · ln 4m

]
<

1

4m
By symmetry, we get

Pr
[
|χ(r)| ≥

√
n · ln 4m

]
≤ 2

4m
=

1

2m
.

Finally, using Union bound, we have

Pr
[
disc(χ) ≥

√
n · ln 4m

]
= Pr

[⋃
r

|χ(r)| ≥
√
n · ln 4m

]
≤
∑
r

Pr
[
|χ(r)| ≥

√
n · ln 4m

]
≤
∑
r

1

2m
=

1

2

from which the claim follows.

Notes on concentration measures: We explore the difference between using Chernoff bound and using
Chebyshev’s Inequality in this short example.

Let Y = Y1 + Y2 + · · ·+ Yt, where each Yi is chosen independently uniformly at random from {−1,+1}. By
Chernoff bound, Pr[Y ≥ ∆] < 1

e∆2/2t
.

We now bound the same probability using Chebyshev’s inequality. We note that E[Yi] = 0,E[Y ] =∑
i E[Yi] = 0,E[Y 2

i ] = 1,Var[Yi] = E[Y 2
i ] − (E[Yi])

2 = 1. Due to independence of each Yi, Var(Y ) =
t∑
i=1

Var(Yi) = t, and σ(Y ) =
√

Var(Y ) =
√
t.

By Chebyshev Inequality, for any real number α > 0, Pr
[
|Y −E[Y ]| ≥ α ·

√
t
]
≤ 1

α2 .

Plugging α = 10 in the above, we get

Pr[|Y | ≥ 10 ·
√
t] ≤ 1

100

Plugging ∆ = 10 ·
√
t in the inequality obtained using Chernoff bound, we have

Pr[Y ≥ 10 ·
√
t] <

1

e50
⇒ Pr[|Y | ≥ 10 ·

√
t] <

2

e50
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Thus, the bound obtained using Chernoff bound is a much more precise bound than that obtained using
Chebyshev Inequality.

Lemma 3.8 Given a range space S = (X,R), a partition Π, a coloring χ compatible with Π and disc(χ) ≤ f ,

let Q = {x ∈ X | χ(x) = −1}. Then, for any r ∈ R,
∣∣∣ |X∩r||X| −

|Q∩r|
|Q|

∣∣∣ ≤ f
n , i.e. Q is an f

n -approximation.

Proof: Fix r ∈ R. Then,

|χ(r)| = ||X \Q ∩ r| − |Q ∩ r||
= ||X ∩ r| − |Q ∩ r| − |Q ∩ r||
= ||X ∩ r| − 2 · |Q ∩ r|| ≤ f

Dividing last inequality by |X| = 2 · |Q| = n, we get∣∣∣∣ |X ∩ r||X|
− 2 · |Q ∩ r|

2 · |Q|

∣∣∣∣ ≤ f

n

Lemma 3.9 If A is an ε-approximation for (X,R) and A′ is an ε′-approximation for (A,RA), then A′ is
an (ε+ ε′)-approximation for (X,R).

The proof of the above claim is left as a homework.


