Lecture 3 \& 4 : ε-net(contd.), ε-approximation and Discrepancy

Lecturer: Kasturi Varadarajan
Scribe: Santanu Bhowmick

In the last lecture, we looked at a probabilistic proof of the following lemma, for which we now provide a deterministic algorithm.

Lemma 3.1 Let $\mathcal{S}=(X, \mathcal{R})$ be a finite range space and $0<\epsilon<1$. Then \mathcal{S} has an ϵ-net of size $O\left(\frac{1}{\epsilon} \ln |\mathcal{R}|\right)$.

Proof: We construct a set $N \subseteq X$ using the following algorithm.

```
\(R^{\prime} \leftarrow\{r \in R| | r|>\varepsilon \cdot| X \mid\}\).
\(N \leftarrow \varnothing\).
while \(R^{\prime} \neq \varnothing\) do
    Pick \(x \in X\) that occurs in maximum number of ranges in \(\mathcal{R}\).
    \(R^{\prime} \leftarrow R^{\prime} \backslash\left\{r \in R^{\prime} \mid x \in r\right\}\).
    \(N \leftarrow N \cup\{x\}\)
    return \(N\)
```

By construction, N is an ε-net as it has at least one element from each "sufficiently large" range i.e. ranges having more than $\varepsilon \cdot|X|$ elements. We bound the size of N as follows.

Suppose $\left|R^{\prime}\right|=k$ at the beginning of a certain iteration. Each $r \in R^{\prime}$ contains more than $\varepsilon \cdot|X|$ elements by definition. We claim that there exists an element $x \in X$ that is contained in at least $\frac{\varepsilon \cdot|X|}{|X|} \cdot k$ ranges in R^{\prime}. (To see why, consider the directed bipartite graph $G=\left(R^{\prime}, X, E\right)$ where $(r, x) \in E$ if $x \in r$. Each vertex $r \in R^{\prime}$ has at least $\varepsilon \cdot|X|$ outgoing edges, so the total outdegree from the set R^{\prime} is at least $\varepsilon \cdot|X| \cdot k$. The average indegree of X is thus $\frac{\varepsilon \cdot|X|}{|X|} \cdot k=\varepsilon \cdot k$. Hence, there exists at least one element in X with indegree $\varepsilon \cdot k$.) Thus, after the iteration of the while loop,

$$
\left|R^{\prime}\right| \leq k-\varepsilon \cdot k=(1-\varepsilon) \cdot k
$$

Homework: Show that the bound on the size of N in the lemma follows.

Lemma 3.2 Suppose $\mathcal{S}=(X, \mathcal{R})$ has VC-dimension d, and let $\Pi_{\mathcal{S}}$ be its shatter function. Then

$$
\Pi_{\mathcal{S}}(m) \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\cdots+\binom{m}{d} \equiv \phi_{d}(m)
$$

Proof: Let $Y \subseteq X$ be a finite subset with m elements. Then $\left(Y, \mathcal{R}_{Y}\right)$ has VC-dimension at most d. It suffices to show that if (X, \mathcal{R}) is a finite range space with VC-dimension at most d and $|X|=m$, then $|\mathcal{R}| \leq \phi_{d}(m)$. We prove the result by induction on m and d as follows.

Fix $x \in X$, and let $\mathcal{R}_{1}=\mathcal{R}_{X \backslash\{x\}}$. The range space $\left(X \backslash\{x\}, \mathcal{R}_{1}\right)$ has VC-dimension of at most d. So, inductively, $\left|\mathcal{R}_{1}\right| \leq \phi_{d}(m-1)$.

Let $\mathcal{R}_{2}=\{r \in R \mid x \notin r, r \cup\{x\} \in \mathcal{R}\}$. The VC-dimension of $\left(X \backslash\{x\}, \mathcal{R}_{2}\right)$ is at most $d-1$, and hence $\left|\mathcal{R}_{2}\right| \leq \phi_{d-1}(m-1)$.

Then,

$$
\begin{aligned}
|\mathcal{R}| & =\left|\mathcal{R}_{1}\right|+\left|\mathcal{R}_{2}\right| \\
& \leq \phi_{d}(m-1)+\phi_{d-1}(m-1) \\
& =\phi_{d}(m)
\end{aligned}
$$

The last equality can be explained by the component-wise sum of the two terms $\phi_{d}(m-1)$ and $\phi_{d-1}(m-1)$, as follows:

$$
\begin{array}{rlrlll}
\phi_{d}(m-1) & = & \binom{m-1}{0}+\binom{m-1}{1} & +\binom{m-1}{2} & +\ldots & +\binom{m-1}{d-1}
\end{array}+\binom{m-1}{d}
$$

It follows that if $|\mathcal{R}|=O\left(|X|^{d}\right)$, then ε-net size is $O\left(\frac{d}{\varepsilon} \log |X|\right)$.

Definition 3.3 Let $\mathcal{S}=(X, \mathcal{R})$ be a finite range space, and let $0 \leq \varepsilon \leq 1$. A subset $A \subseteq X$ is an ε-sample (ε-approximation) if for any $r \in R$,

$$
\left|\frac{|X \cap r|}{|X|}-\frac{|A \cap r|}{|A|}\right| \leq \varepsilon
$$

Lemma 3.4 If A is an ε-approximation, it is also an ε-net.

Proof: Let $r \in \mathcal{R}$ be a range having greater than $\varepsilon \cdot|X|$ elements. Then, $\frac{|X \cap r|}{|X|}>\varepsilon$, and since A is an ε-approximation, $\frac{|A \cap r|}{|A|}>0$ and thus A has non-zero intersection with range r.

Definition 3.5 Let $\mathcal{S}=(X, \mathcal{R})$ be a range space. Let $\chi: X \rightarrow\{-1,+1\}$ be a coloring. We denote/define/say:

- For $r \in \mathcal{R}$, let $\chi(r) \equiv \sum_{x \in r} \chi(x)$.
- Discrepancy of χ over $r \equiv|\chi(r)|$.
- Discrepancy of $\chi, \operatorname{disc}(\chi) \equiv \max _{r \in R}|\chi(r)|$.
- Discrepancy of $\mathcal{S} \equiv \min _{\chi: X \rightarrow\{-1,+1\}} \operatorname{disc}(\chi)$.

Definition 3.6 Suppose $|X|$ is even, and Π is a partition of X into pairs. We can say that $\chi: X \rightarrow\{-1,+1\}$ is compatible with Π if for each $\{p, q\} \in \Pi$, either

- $\chi(p)=+1$ and $\chi(q)=-1$, or
- $\chi(q)=+1$ and $\chi(p)=-1$

Lemma 3.7 Let $\mathcal{S}=(X, \mathcal{R})$ be a range space, and let Π be a partition of X into pairs. Let $|X|=n,|\mathcal{R}|=m$. Let χ be a random coloring compatible with Π. Then $\operatorname{Pr}[\operatorname{disc}(\chi)<\sqrt{n \cdot \ln 4 m}] \geq \frac{1}{2}$.

Proof: For range $r \in \mathcal{R}$, let $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\} \subseteq r$ be those elements paired with an element not in r. Then

$$
\chi(r)=\chi\left(x_{1}\right)+\chi\left(x_{2}\right)+\cdots+\chi\left(x_{t}\right)
$$

is the sum of t independent random variables uniformly chosen from $\{-1,+1\}$. Hence, for any $\Delta>0$, we have the following by applying Chernoff bound,

$$
\operatorname{Pr}[\chi(r) \geq \Delta]<e^{\frac{-\Delta^{2}}{2 t}}=\frac{1}{e^{\frac{\Delta^{2}}{2 t}}}
$$

Setting $\Delta=\sqrt{2 t \cdot \ln 4 m}$, we get $\operatorname{Pr}[\chi(r) \geq \sqrt{2 t \cdot \ln 4 m}]<\frac{1}{e^{\ln 4 m}}=\frac{1}{4 m}$.
Since $t \leq \frac{n}{2}$,

$$
\operatorname{Pr}[\chi(r) \geq \sqrt{n \cdot \ln 4 m}] \leq \operatorname{Pr}[\chi(r) \geq \sqrt{2 t \cdot \ln 4 m}]<\frac{1}{4 m}
$$

By symmetry, we get

$$
\operatorname{Pr}[|\chi(r)| \geq \sqrt{n \cdot \ln 4 m}] \leq \frac{2}{4 m}=\frac{1}{2 m}
$$

Finally, using Union bound, we have

$$
\begin{aligned}
\operatorname{Pr}[\operatorname{disc}(\chi) \geq \sqrt{n \cdot \ln 4 m}] & =\operatorname{Pr}\left[\bigcup_{r}|\chi(r)| \geq \sqrt{n \cdot \ln 4 m}\right] \\
& \leq \sum_{r} \operatorname{Pr}[|\chi(r)| \geq \sqrt{n \cdot \ln 4 m}] \\
& \leq \sum_{r} \frac{1}{2 m}=\frac{1}{2}
\end{aligned}
$$

from which the claim follows.

Notes on concentration measures: We explore the difference between using Chernoff bound and using Chebyshev's Inequality in this short example.
Let $Y=Y_{1}+Y_{2}+\cdots+Y_{t}$, where each Y_{i} is chosen independently uniformly at random from $\{-1,+1\}$. By Chernoff bound, $\operatorname{Pr}[Y \geq \Delta]<\frac{1}{e^{\Delta^{2} / 2 t}}$.

We now bound the same probability using Chebyshev's inequality. We note that $\mathbf{E}\left[Y_{i}\right]=0, \mathbf{E}[Y]=$ $\sum_{i} \mathbf{E}\left[Y_{i}\right]=0, \mathbf{E}\left[Y_{i}^{2}\right]=1, \operatorname{Var}\left[Y_{i}\right]=\mathbf{E}\left[Y_{i}^{2}\right]-\left(\mathbf{E}\left[Y_{i}\right]\right)^{2}=1$. Due to independence of each $Y_{i}, \operatorname{Var}(Y)=$ $\sum_{i=1}^{t} \operatorname{Var}\left(Y_{i}\right)=t$, and $\sigma(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{t}$.
By Chebyshev Inequality, for any real number $\alpha>0, \operatorname{Pr}[|Y-\mathbf{E}[Y]| \geq \alpha \cdot \sqrt{t}] \leq \frac{1}{\alpha^{2}}$.
Plugging $\alpha=10$ in the above, we get

$$
\operatorname{Pr}[|Y| \geq 10 \cdot \sqrt{t}] \leq \frac{1}{100}
$$

Plugging $\Delta=10 \cdot \sqrt{t}$ in the inequality obtained using Chernoff bound, we have

$$
\operatorname{Pr}[Y \geq 10 \cdot \sqrt{t}]<\frac{1}{e^{50}} \Rightarrow \operatorname{Pr}[|Y| \geq 10 \cdot \sqrt{t}]<\frac{2}{e^{50}}
$$

Thus, the bound obtained using Chernoff bound is a much more precise bound than that obtained using Chebyshev Inequality.

Lemma 3.8 Given a range space $\mathcal{S}=(X, \mathcal{R})$, a partition Π, a coloring χ compatible with Π and disc $(\chi) \leq f$, let $Q=\{x \in X \mid \chi(x)=-1\}$. Then, for any $r \in R,\left|\frac{|X \cap r|}{|X|}-\frac{|Q \cap r|}{|Q|}\right| \leq \frac{f}{n}$, i.e. Q is an $\frac{f}{n}$-approximation.

Proof: Fix $r \in \mathcal{R}$. Then,

$$
\begin{aligned}
|\chi(r)| & =\|X \backslash Q \cap r|-| Q \cap r\| \\
& =\|X \cap r|-|Q \cap r|-| Q \cap r\| \\
& =\|X \cap r|-2 \cdot| Q \cap r\| \leq f
\end{aligned}
$$

Dividing last inequality by $|X|=2 \cdot|Q|=n$, we get

$$
\left|\frac{|X \cap r|}{|X|}-\frac{2 \cdot|Q \cap r|}{2 \cdot|Q|}\right| \leq \frac{f}{n}
$$

Lemma 3.9 If A is an ε-approximation for (X, \mathcal{R}) and A^{\prime} is an ε^{\prime}-approximation for $\left(A, \mathcal{R}_{A}\right)$, then A^{\prime} is an $\left(\varepsilon+\varepsilon^{\prime}\right)$-approximation for (X, \mathcal{R}).

The proof of the above claim is left as a homework.

