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Week 10: MW Applications
Lecturer: Kasturi Varadarajan Scribe: Leixin Zhou

1 MW when gains considered

There are situations where it makes more sense for the vector m(t) to specify gains for each expert rather
than losses. Now our goal is to get as much total expected payoff as possible in comparison to the total
payoff of the best expert. We can get an algorithm for this case simply by running the Multiplicative Weights
algorithm using the cost vector −m(t). The resulting algorithm is identical, and the following theorem follows
directly from Claim 9.2 and Corollary 9.3 by simply negating the quantities. Under the scenario of gains, we
have following Theorem and Corollary. Assume there are n experts, MW updates T rounds and η ≤ 1

2 .

Theorem 10.1. For any expert i,

T∑
t=1

m(t) · p(t) ≥ η
T∑
t=1

|m(t)
i | −

lnn

η

Corollary 10.1. For any distribution p over experts,

T∑
t=1

m(t) · p(t) ≥
T∑
t=1

(m(t) − η|m(t)|) · p− lnn

η

2 Learning a linear classifier: Winnow

Input: m labelled examples: (a1, l1), (a2, l2), · · · , (am, lm), where aj ∈ Rn is a feature vector and each
lj ∈ {−1,+1} is the corresponding label.

Goal: Find vector X ∈ Rn with Xi ≥ 0 for each i and sign(aj ·X) = lj or lj(aj ·X) ≥ 0 for each j.
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The above figure shows a simple example when n = 2. X is a goal vector candidate and the corresponding
separator is the line orthogonal to X.

For notational convenience, if we redefine aj to be ljaj , then the problem reduces to finding a solution
to the following LP: find X ∈ Rn s.t ∀j = 1, 2, · · · ,m, aj ·X ≥ 0, 1 ·X = 1, ∀i : Xi ≥ 0.

Assumption: there exists a large-margin solution X∗, i.e, there is ε > 0 s.t aj ·X∗ ≥ ε for each j.

Algorithm: Run MW, each feature is an expert. Pick η = ε
2ρ . At each time, MW algorithm has a

probability distribution p(t) over experts / features.
— If aj · p(t) ≥ 0 for each j, we stop
— If not, pick any j s.t aj · p(t) < 0. Let gain vector m(t) = 1

ρ × aj , where ρ = maxi,j |ai,j |.

Analysis: note that if p(t) fails to satisfy constraints, m(t) · p(t) = 1
ρaj · p

(t) < 0, whereas m(t) · X∗ =
1
ρaj ·X

∗ ≥ ε
ρ . Suppose we have T fail iterations. Then using Corollary 1:

0 >

T∑
t=1

m(t) · p(t) ≥
T∑
t=1

(m(t) − η|m(t)|) · p− lnn

η

≥ ε

ρ
T − ηT − lnn

η

=
ε

ρ
T − ε

2ρ
T − 2ρ lnn

ε
=

ε

2ρ
T − 2ρ lnn

ε

⇒ 0 ≥ ε

2ρ
T − 2ρ lnn

ε

⇒ T ≤ 4ρ2 lnn

ε2

3 Solving zero-sum games approximately

Here is a very simple zero-sum game example demonstrated by table 1. There are two player i and j. Row
player (i.e i) has two strategies, each of which correspond to one row of the table. Column player (i.e j) has
three strategies, each of which corresponds to one column. A(i, j) denotes payoff from row player to column

i\j 1 2 3
1 9 3 4
2 1 7 6

Table 1: Example 1 with 2 players i and j.

player. For example, if row player uses strategy one and column player picks strategy one, the payoff is
A(1, 1) = 9. Player i wants to minimize payoff and player j wants to maximize payoff.

If row player goes first, his optimal play is to picks a row i that minimizes maxj′ A(i, j
′
). For the given

example, the optimal is 7. If column player goes first, his best play is to pick a column j, that maximize
mini′ A(i

′
, j). In this case, the optimal is 4.

Claim 10.1.
min
i

max
j
A(i, j) ≥ max

j
min
i
A(i, j)
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Proof. Exercise

An example is matching pennies, which is shown in table 2. In this case, the left side is 1 and the right side
is 0, i.e 1 > 0.

H T
H 0 1
T 1 0

Table 2: Matching pennies game.

Now suppose that a strategy of row players is a distribution p over rows. Strategy of column play is
distribution q over columns. Given p, expected payoff for column j is defined as:

A(p, j) := Ei∼p[A(i, j)]

For example, if we consider the example 1 and p = ( 1
4 ,

3
4 ), then A(p, 1) = 1

4 × 9 + 3
4 × 1.

Under the probability scenario, if row player goes first, optimal for column player is : maxj A(p, j);
optimal for row player is : minp maxj A(p, j). If column player goes first, optimal for column player is :
maxq miniA(i,q). Right now, Claim 10.1 becomes:

min
p

max
j
A(p, j) ≥ max

q
min
i
A(i,q)

Von Neumann’s min-max theorem: Equality holds. e.g in the case of example 2, poptimal = qoptimal =
( 1
2 ,

1
2 ) and the corresponding payoff are both 1

2 .
Given A, each entry is in [0, 1] range and let λ∗ = minp maxj A(p, j). We will find a distribution p̃ s.t :

max
j
A(p̃, j) ≤ λ∗ + ε

Apply MW. Each row is an expert. So at each time t = 1, 2, · · · , T , algorithm has a probability distribution
p(t) over rows. Let jt be a column that maximizes A(p(t)), j). Column jt is loss vector at time t. By MW
corollary, for any distribution p,

T∑
t=1

A(p(t), j(t)) ≤ (1 + η)

T∑
t=1

A(p, j(t)) +
lnn

η
)

≤
T∑
t=1

A(p, j(t)) + η

T∑
t=1

p · |m(t)|+ lnn

η

≤
T∑
t=1

A(p, j(t)) + η

T∑
t=1

1 +
lnn

η

≤
T∑
t=1

A(p, j(t)) + ηT +
lnn

η
]

Dividing by T ,

1

T

T∑
t=1

A(p(t), j(t)) ≤ 1

T

T∑
t=1

A(p, j(t)) + η +
lnn

ηT
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