
STAT:5400 (22S:166)
Lab session 3

Elementary data analysis in R

Sep. 11, 2015

1 Setting up

Use NX Client to get onto the Linux network. Use ssh to log into one of the
machines in the 346 lab.

Choose a subdirectory to use for this R session. Go to the “Datasets” section of
the course web page. Read the file called BaP.info, and download the data file
called BaP.txt into the subdirectory you wish to use. Then call up R from that
subdirectory.

Alternatively, if you are working on a computer on the DIVMS network, you can
simply copy the file from the Datasets directory into your subdirectory. The path is
/mnt/nfs/netapp1/homepage/kcowles/Datasets. Suppose you have a directory
calles examples inside a directory called 166. Then you could do the following to
copy the BaP.txt data into this directory:

[kcowles@p-lnx402 ~]$ cd 166/examples

[kcowles@p-lnx402 examples]$ cp /mnt/nfs/netapp1/homepage/kcowles/Datasets/BaP.txt .

2 Using on-line help in R

From within R, you can get help on any R function by typing help (<command

name>). For example, to get help on the library function, enter

> help(library)

You can press the space bar to scroll down by a screen, and q to get out of the help
display.

To use “prettier” help in separate window, enter

> help.start()

After a while, a web window will come up. You can click on choices for help doc-
uments in that window. If you type help (<command name>) in the command
window later in the R session, the results will appear in the web window.

Another function that is useful in learning R and getting help is apropos. It finds
all functions whose names contain the character string given as the argument. Only
packages that have been loaded into memory are searched. For example,

> apropos("rank")

1

Yet another useful function is help.search. It looks for any function in any in-
stalled package that mentions the search term in its help. The name of the package
containing the function is in parentheses. For example,

> help.search("rank")

Help files with alias or concept or title matching rank using

regular expression matching:

rank(base) Sample Ranks

SignRank(stats) Distribution of the Wilcoxon Signed Rank

Statistic

. .

. .

. .

3 Using built-in R datasets

Use the search function to determine which R packages are loaded automatically
when you bring R up.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Notice that the datasets, stats, and graphics packages are listed. This means
you can access any of the built-in R datasets and any functions in the stats and
graphics packages without having to load the packages yourself. To get names and
descriptions of the datasets, enter

> help(package=datasets)

To display the Orange dataset (it is a data frame), just enter

> Orange

To get descriptive information on the dataset named Orange, enter

> help(Orange, package=datasets)

Notice the example code at the end of the help. Copy the line that begins coplot

into the command window and execute it. This is an example of a very powerful
plotting function in the graphics package. Type in the necessary command to get
help on this function.

4 Reading in an external file

To read the BaP data into a data frame called Bap, enter

2

BaP <- read.table("BaP.txt", header = T)

If the data file was in a different subdirectory, we would have to enter its full path
name.

We can also read it in straight from its Internet location:

BaP <- read.table("http://www.stat.uiowa.edu/ftp/kcowles/datasets/BaP.txt", header = T)

To get a scatterplot with the indoor measurements on the X axis and the outdoor
measurements on the Y axis, enter:

plot(BaP$indoor, BaP$outdoor)

If we want to refer to the variables indoor and outdoor without refencing the
dataframe, we need to attach the dataframe.

attach(BaP)

Note that this makes BaP the second item in the search list.

search()

Now we could just enter plot(indoor, outdoor).

When we are done using the data frame, we should detach it to free up memory.

detach(BaP)

Use search() to verify that the BaP data frame has been detached.

5 Using the library that accompanies the assigned read-
ings

Verzani wrote an add-on R library to accompany his book Simple R. In the online
version of the book, he refers to this library as the Simple library. However, the
name has been changed and it is now called the UsingR library. I have installed it
under R on our Linux system. This library does not load automatically when you
call up R. We have to load it using the library function. We will load this library
and use some of the datasets in it to learn some data analysis functions in R.

> .libPaths(c(.libPaths(), ’/group/statsoft/Rlibs64’))

> library(UsingR) # load library

> help(package="UsingR") # get information on all functions and datasets in library

> help(corn) # get information on one particular dataset in library

> corn # display dataframe

New Standard

1 110 102

2 103 86

3 95 88

3

4 94 75

5 87 89

6 119 102

7 102 105

8 93 88

9 87 83

10 98 89

11 105 100

12 117 110

6 Elementary data analysis in R

We want to determine whether the mean yield of New corn is larger than that of
Standard corn.

Begin with exploratory analysis of data – both numeric and graphical.

> summary(corn)

New Standard

Min. : 87.00 Min. : 75.00

1st Qu.: 93.75 1st Qu.: 87.50

Median :100.00 Median : 89.00

Mean :100.83 Mean : 93.08

3rd Qu.:106.25 3rd Qu.:102.00

Max. :119.00 Max. :110.00

> boxplot(corn) # side-by-side boxplots of all variables in dataset

> attach(corn) # make the individual variables available by name

> hist(New, probability = T) # make a probability histogram

> lines(density(New), col = "red")

> hist(Standard, probability = T)

> lines(density(Standard), col = "red")

Further assessment of whether samples might come from normal populations

> qqnorm(Standard); qqline(Standard, col = 2)

> qqnorm(New) ; qqline(New, col = 2)

These results are equivocal as to whether the normality assumption holds. A t-test
might be appropriate, but a nonparameteric test probably is safer. We will do both
and see whether they agree.

> t.test(New, Standard, alternative = "greater")

4

Welch Two Sample t-test

data: New and Standard

t = 1.8061, df = 21.996, p-value = 0.04231

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

0.3815088 Inf

sample estimates:

mean of x mean of y

100.83333 93.08333

Note that the confidence interval is one-sided, to match the requested one-sided alternative

hypothesis.

> help(wilcox.test) # get help on nonparametric test for equality of centers

> wilcox.test(New, Standard, alternative = "greater", conf.int = T)

Wilcoxon rank sum test with continuity correction

data: New and Standard

W = 99, p-value = 0.06264

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-3.221176e-05 Inf

sample estimates:

difference in location

7.00006

Warning messages:

1: In wilcox.test.default(New, Standard, alternative = "greater", conf.int = T) :

cannot compute exact p-value with ties

2: In wilcox.test.default(New, Standard, alternative = "greater", conf.int = T) :

cannot compute exact confidence intervals with ties

Results are equivocal. Since there are tied values in the data, p-value isn’t exact. However,

the evidenc is not compelling of a difference in average yields between New and Standard corn.

> detach(corn)

Let’s also investigate estimation and testing for proportions. Researchers wanted to
study the effectiveness of wrist guards in protecting in-line skaters from wrist injury.
THey interviewed 161 people who came into hospital emergency rooms with injuries
form in-line skating. The table summaries relevant findings.

Wrist guard Wrist injury
Y N

Y 6 47 53
N 45 63 108

5

Let’s get a point estimate and confidence interval for the population proportion who
will sustain wrist injuries in the population of in-line skaters who are injuried while
wearing a wrist guard.

> binom.test(6,53)

Exact binomial test

data: 6 and 53

number of successes = 6, number of trials = 53, p-value = 5.805e-09

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.04269639 0.23028992

sample estimates:

probability of success

0.1132075

Now in the population of in-line skaters who are injured while not wearing a wrist
guard.

> binom.test(45, 108)

Exact binomial test

data: 45 and 108

number of successes = 45, number of trials = 108, p-value = 0.1014

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.3225425 0.5154792

sample estimates:

probability of success

0.4166667

Now let’s test for the equality of the two population proportions, and get a confidence
interval for the difference.

> wearers <- c(53,108)

> wristinjury <- c(6,45)

>

> prop.test(wristinjury, wearers)

2-sample test for equality of proportions with continuity correction

data: wristinjury out of wearers

X-squared = 13.7577, df = 1, p-value = 0.0002080

alternative hypothesis: two.sided

95 percent confidence interval:

-0.4437038 -0.1632144

sample estimates:

6

prop 1 prop 2

0.1132075 0.4166667

If we want a one-sided test and a one-sided confidence interval (for the alternative
hypothesis that the proportion of wrist injuries is smaller in the population of wrist-
guard wearers), we would do the following:

> prop.test(wristinjury, wearers, alternative="less")

2-sample test for equality of proportions with continuity correction

data: wristinjury out of wearers

X-squared = 13.7577, df = 1, p-value = 0.0001040

alternative hypothesis: less

95 percent confidence interval:

-1.000000 -0.183501

sample estimates:

prop 1 prop 2

0.1132075 0.4166667

7 Writing R programs

The safest way to write an R program in the Unix or Linux environment is to write
and save it as a text file separate from R. There are at least two ways to do this.
One is to open a terminal window (separate from the one in which you are using R)
and from there, use a text editor to write the program code and save it as a plain
text file with the extension .R. You may wish to develop the code interactively in
R and copy the lines into the program file in the text editor. You can then run the
program in R using the source function, for example, if the program was named
“dostuff.R,”

> source("dostuff.R")

The other is to invoke Emacs, and get a second window using File / New frame.
Start R in one of the windows, by typing Alt-X R. In the other window, choose
File/Open file, and then give the new file a name with extension .R. Notice that
Emacs shows “ESS” in the gray line near the bottom of the window. This shows
that “Emacs Speaks Statistics” is running. It has special capabilities for copying
code from this window and running it under R.

8 Writing R functions

Similarly, to write an R function that contains more than a few lines of code, use
one of the methods described above.

We will write a function that does the following:

1. Accepts a vector as an argument

7

2. If the vector is numeric and has at least 20 distinct values, returns the quantiles
of the values

3. Otherwise returns a tabulation of the values

Use your text editor to create a plain text file named “process.R” that contains the
following code.

process <- function(x)

{

if (is.character(x) | is.factor(x)

| (is.numeric(x) & length(unique(x)) < 20))

table(x)

else

quantile(x)

}

Now read it into an R function by entering the following in R:

>source("process.R")

If R reports syntax errors, correct them in the text file; then try source again.

Test your function by creating different types of vectors and using them as argu-
ments. For example,

myvect <- c(rep("a",5), rep("w",2), "n", "q", "v")

process(myvect)

myvect <- rnorm(10)

process(myvect)

myvect <- rnorm(500)

process(myvect)

8

