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Introduction Residential radon

Radon

exposure to radon gas in buildings is a likely risk factor for lung
cancer

many public health studies have attempted to estimate residential
radon levels

naturally-occurring radioactive gas (222Rn)

found to some extent in all dry-land surface air

a decay product of the uranium in rocks and soil
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Introduction Residential radon

Our goals

scientific goal: to improve understanding of the geographic
distribution of residential radon levels in Iowa by combining two
available datasets

estimation of parameters describing the spatial correlation and
average levels
prediction of radon levels at unmeasured locations
mapping of surface of average residential radon over Iowa

computing goal: to develop computing algorithms and strategies
that would enable use of much larger datasets of this kind
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Introduction Data

Two data sources for this study

Iowa Radon Lung Cancer Study (IRLCS)

EPA/State Residential Radon Survey for Iowa (SRRS)
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Introduction Data

Iowa Radon Lung Cancer Study

purpose: to estimate the effect of residential radon on lung cancer
risk

began in 1993
4626 radon measurements in 1027 homes in Iowa

413 incident lung cancer cases
614 population-based, disease-free controls
at least one radon detector placed on each floor of each home
locations of homes representative of geographic distribution of Iowa
population

measurements were annual averages taken using alpha-track
detectors

point-referenced data

units are picocuries per liter (pCi/l)
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Introduction Data

More on IRLCS

Iowa – ideal region for study of residential radon exposure
we used data only from control homes

598 homes
2802 measurements
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Introduction Data

EPA/State Residential Radon Surveys

EPA began in winter of 1986/87 to assist states in measuring
home radon
two objectives

to estimate the maximum indoor radon potential
short-term measurements were take with charcoal canisters
placed in the lowest livable areas of homes for 2–7 winter days

to identify geographic regions of elevated indoor radon
random-digit dialing to sample geographically dispersed homes
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Introduction Data

SRRS data for Iowa

1381 short-term radon measurements

addresses not available, so geocoding to latitude/longitude
coordinates not possible
zipcodes and county identifiers provided

zipcode sometimes not considered reliable

486 distinct zipcodes
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Introduction Data
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Introduction Data

Facts about radon in homes

radon concentrations highest in basements; decreasing gradient
as go up through floors

characteristics of home and residents affect radon levels
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Background: Simple Bayesian model and computing for point source
data

Bayesian geostatistical models

geostatistical models
natural and interpretable way to model spatial correlation for data
measured at irregularly-spaced point sites
correlation is a function of the distance, and possibly orientation,
between sites

Bayesian approach
leads to more accurate quantification of uncertainty in estimation
and prediction than frequentist kriging
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Background: Simple Bayesian model and computing for point source
data

Parametric correlation functions

Function corr(φ, d)

Exponential exp(−φd)

Gaussian exp(−(φd)2)

Spherical 1
2(φ3d3 − 3φd + 2), d ≤ 1

φ

0, d > 1
φ

φ is a parameter controlling the rate of decay of correlation with
increasing distance

corr(φ, d) is the correlation between residuals at two sites
separated by distance d .
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Background: Simple Bayesian model and computing for point source
data

Isotropic and anisotropic spatial correlation

isotropic : correlation decays with increasing distance at the same
rate in all directions
geometrically anisotropic : correlation is a function of orientation
as well as distance between points

requires two additional parameters in correlation function
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Background: Simple Bayesian model and computing for point source
data

Simplest geostatistical model for point-source data
with spatial correlation and additive measurement
error

Y = Xβ + Z + ε, (1)

Z ∼ N
(
0, σ2

zΩ(φ)
)
, ε ∼ N(0, σ2

eI), (2)

X is a matrix of covariates
β is a vector of coefficients to be estimated
Ω(φ) is spatial correlation matrix

entries are calculated from correlation function
σ2

z is spatial variance
σ2

e is random variance (measurement error variance)
I is identity matrix
Bayesian model completed by specification of prior distributions
on φ, σ2

z , σ2
e, and β
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Background: Simple Bayesian model and computing for point source
data

Specifying prior distributions for model parameters

p(β) ∝ 1

σ2
e ∼ IG(ae, be)

σ2
z ∼ IG(az , bz)

φ ∼ U(lφ, uφ)

improper flat prior on β

semi-conjugate inverse gamma prior distributions on variances
infinite variance; centered at 0.5

uniform prior on φ chosen to include all possible values
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Background: Simple Bayesian model and computing for point source
data Standard MCMC algorithms

Fitting the model using standard MCMC algorithms

MCMC methods construct a Markov chain whose stationary
distribution is the posterior joint distribution of interest:

p(β, σ2
e, σ2

z , φ|y)

WinBUGS?
ggt.sp function in R package spBayes

developed by Andrew Finley, Brad Carlin, and Sudipto Banerjee at
U of Minn Biostats
factor posterior distribution into

p(σ2
e , σ2

z , φ|y)p(β|σ2
e , σ2

z , φ, y)

use Metropolis-Hastings algorithm to draw from p(σ2
e , σ2

z , φ|y)
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Background: Simple Bayesian model and computing for point source
data Standard MCMC algorithms

Trace plots: ggt.sp algorithm 1
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Background: Simple Bayesian model and computing for point source
data Standard MCMC algorithms

Trace plots: ggt.sp algorithm 2
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Background: Simple Bayesian model and computing for point source
data Standard MCMC algorithms

Autocorrelation plots: ggt.sp algorithm 2
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)

Our alternative reparameterization

facilitates prior specification and computing algorithm

reparameterized covariance matrix

Y ∼ N
(

Xβ, σ2
zΩ(φ) + σ2

eI
)

σ2
zΩ(φ) + σ2

eI = σ2
tot [(1− κ) Ω(φ) + κ I]

where

σ2
tot = σ2

z + σ2
e

κ =
σ2

e

σ2
z + σ2

e

κ is “shrinkage factor" used in uniform shrinkage prior on
variances in hierarchical models
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)

Prior distributions for σ2
tot and κ

If

σ2
z ∼ IG(az , bz)

σ2
e ∼ IG(ae, be)

then standard multivariate change-of-variable methods can be used to
show that the joint prior distribution induced on (σ2

tot , κ) is

f (κ; az , bz , ae, be) =
Γ(ae + az)b

ae
e baz

z

Γ(ae)Γ(az)

κaz−1(1− κ)ae−1

[bzκ + be(1− κ)]ae+az
, κ ∈ (0, 1)

σ2
tot |κ ∼ IG

(
ae + az ,

bz

1− κ
+

be

κ

)
.

When bz = be, the marginal density of κ is a Beta density with shape
parameters az and ae.
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)

Our MCMC algorithm for estimation in this model

based on factoring posterior

p( β, φ, σ2
tot , κ|y) =

p(φ, κ|y) × p(σ2
tot |φ, κ, y) × p( β|φ, σ2

tot , κ, y)

each MCMC iteration m
generate (φm, κm, ) from continuous joint marginal p(φ, κ|y) using
slice sampling
generate σ2 m

tot from p(σ2
tot |φm, κm, y) — inverse gamma

generate β from p( β|φm, σ2 m
tot , κm, y) — multivariate normal

all parameters are blocked – would be i.i.d. sampling if there were
a way to obtain independent draws from joint posterior marginal of
φ and κ
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)

Drawing from joint posterior marginal distribution of φ

and κ

p(φ, κ | y) ∝
1 bz

1−κ + be
κ +

»
y−X β̂(φ,κ)

–T

Ω(φ,κ)−1

»
y−X β̂(φ,κ)

–
2

ae+az+
n−p

2

× 1
|Ω(φ, κ)|1/2

1
|XT Ω(φ, κ)−1X|1/2

×κ−ae−1(1− κ)−az−1 × I(0,1)(κ) × Il,r (φ)
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)

Drawing from joint posterior marginal distribution of φ

and κ

Cholesky decomposition of Ω(φ, κ) enormously reduces
computation involved for obtaining required determinants and
quadratic form

bivariate slice sampling (Neal, 2003) attractive due to finite
support of both parameters
in our experience, compared to Metropolis updating, slice
sampling

results in lower autocorrelation in sampler output since new values
are drawn at every iteration
at cost of requiring more computationally-expensive evaluations
within each iteration
results in more “effective samples per second"
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)

Comparison of RAMPS and standard MCMC

Table: Efficiency comparison of the RAMPS algorithm and the Gibbs sampler
for a sample dataset of 437 spatial observations. ARL is the loss of
information due to autocorrelation measured by the expected lag at which
autocorrelation drops to zero. ESS is the effective sample size. ESS/s is ESS
per second. Both algorithms were run with 10,000 iterations on a 2.40GHz
CPU Linux machine with the first 1,000 discarded. The RAMPS algorithm
took 9390s and the Gibbs sampler took 6228s.

Parameter Gibbs Sampler RAMPS Algorithm ESS/s Ratio

ARL ESS ESS/s ARL ESS ESS/s RAMPS/Gibbs

β0 1.00 9000.0 1.445 1.00 9000.0 0.958 0.663
σ2

z 37.28 241.4 0.039 1.30 6913.9 0.736 18.872
σ2

e 23.27 386.8 0.062 1.74 5172.1 0.551 8.887
φ 39.74 226.5 0.036 5.22 1725.7 0.184 5.111
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Background: Simple Bayesian model and computing for point source
data Reparameterized and Marginalized Posterior Sampling (RAMPS)

Aside: Parallelizing RAMPS algorithm

Yan, J., Cowles, M.K., Wang, S., Armstrong, M. “Parallelizing MCMC
for Bayesian Spatiotemporal Geostatistical Models." to appear,
Statistics and Computing.
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Appropriate models for IRLCS and SRRS data

Outline

1 Introduction
Residential radon
Data

2 Background: Simple Bayesian model and computing for point
source data

Standard MCMC algorithms
Reparameterized and Marginalized Posterior Sampling (RAMPS)

3 Appropriate models for IRLCS and SRRS data

4 Results
Prediction based on IRLCS data only
Prediction based on combined data; fixed grid
Prediction based on combined data; changing grid

5 Discussion
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Appropriate models for IRLCS and SRRS data

Why preceding model is inadequate

IRLCS data
multiple observations at same home
need home-specific random effects to capture effects of
characteristics of each home and its residents

SRRS data
don’t know exact locations
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Appropriate models for IRLCS and SRRS data

Possible ways to handle SRRS data

attribute all measurements in a given zipcode to zipcode centroid
Young and Gotway show this can give wrong inference regarding
regression coefficients
obviously would not allow for correct inference regarding spatial
correlation

work with areal county averages; for each county:
average radon measurements
average covariates
keep track of how many actual observations contributed to each
average

work with areal zipcode averages
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Appropriate models for IRLCS and SRRS data

Grid of points for areal averages and prediction
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Appropriate models for IRLCS and SRRS data

Geostatistical model actually used

Y = Xβ + Wγ + KZ + ε,

γ ∼ N(0,Ωγ), Z ∼ N(0,ΩZ ), ε ∼ N(0,Ωε),
(3)

where
Y is concatenation of 2802 log-transformed radon values from
IRLCS homes and 99 county averages obtained from SRRS data
β is a 5× 1 vector of fixed-effect coefficients

βIRLCS,0, βIRLCS,1, βIRLCS,2, βSRRS,0, βSRRS,1

γ is a 598× 1 vector of non-spatial random effects for homes
Z is an (598 + 932)× 1 vector of spatial random effects

one for each IRLCS home location, plus 932 grid points for areal
data

ε is an 2901× 1 vector of measurement error,
matrices X , W , and K are design matrices for fixed effects,
non-spatial random effects, and spatial random effects.
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Appropriate models for IRLCS and SRRS data

Matrix K

Kij =


1, Yi is a point source datum measured at site j ,
1
Ni

, site j is one of Ni sites contributing to areal average Yi ,

0, otherwise.

If Yi is a point-source measurement, then Ni = 1. For Yi ’s that are
areal averages, the corresponding Ni ’s are roughly proportional to the
areas of the regions over which the measurements are averaged. The
finer the grid of sites used, the closer the proportionality will be.
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Appropriate models for IRLCS and SRRS data

Variance/covariance matrices

4 variances
σ2

e,IRLCS measurement error variance, long term
σ2

e,SRRS measurement error variance, short term
σ2

re between-home variability
σ2

z variance of underlying spatial process

exploratory analysis of IRLCS data indicated isotropic exponential
correlation function had best combination of fit and parsimony
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Appropriate models for IRLCS and SRRS data

Prior parameters

β improper, ∝ 1 on real line
σ2

e,IRLCS IG(0.01, 0.01)
σ2

e,SRRS IG(0.01, 0.01)
σ2

re IG(0.01, 0.01)
σ2

z IG(0.01, 0.01)
φ U(0.009, 1.5)

Prior distribution on φ implies that distance at which spatial correlation
drops to 0.05 is somewhere between 2 and 340 miles
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Results

Outline

1 Introduction
Residential radon
Data

2 Background: Simple Bayesian model and computing for point
source data

Standard MCMC algorithms
Reparameterized and Marginalized Posterior Sampling (RAMPS)

3 Appropriate models for IRLCS and SRRS data

4 Results
Prediction based on IRLCS data only
Prediction based on combined data; fixed grid
Prediction based on combined data; changing grid

5 Discussion
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Results

Computing

fitted model to IRLCS data alone and to combined IRLCS and
SRRS

for each analysis, 2 parallel chains run for 1000 iterations

trace plots and Brooks, Gelman, and Rubin diagnostic in R
package boa suggested convergence within 200 iterations

reported results are based on combining last 500 iterations of
both chains for each analysis
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Results

Estimation results

Parameter IRLCS and SRRS IRLCS only
post 95% post 95%

mean c.s. mean c.s.
β0,IRLCS 1.533 (1.331, 1.720) 1.533 (1.364, 1.684)
β1,IRLCS 0.909 (0.707,1.093) 0.908 (0.744, 1.054)
β2,IRLCS 0.811 (0.607,1.003) 0.809 (0.635, 0.956)
β0,SRRS 1.825 (1.609,2.023)
β1,SRRS 1.683 (1.207,2.184)

φ 29.177 (12.004,74.832) 16.504 (5.596, 40.777)
σ2

z 0.127 (0.076,0.213) 0.159 (0.091, 0.239)
σ2

e,IRLCS 0.093 (0.087,0.098) 0.093 (0.087, 0.099)
σ2

e,SRRS 0.638 (0.425,0.888)
σ2

re,IRLCS 0.436 (0.376,0.501) 0.403 ( 0.336, 0.474)

Table: Parameter estimates from Bayesian analyses
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Results Prediction based on IRLCS data only
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Results Prediction based on combined data; fixed grid
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Results Prediction based on combined data; changing grid
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Discussion

Outline

1 Introduction
Residential radon
Data

2 Background: Simple Bayesian model and computing for point
source data

Standard MCMC algorithms
Reparameterized and Marginalized Posterior Sampling (RAMPS)

3 Appropriate models for IRLCS and SRRS data

4 Results
Prediction based on IRLCS data only
Prediction based on combined data; fixed grid
Prediction based on combined data; changing grid

5 Discussion
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Discussion

Conclusions

Combining data from disparate sources increases precision of
prediction.

RAMPS algorithm works for complex Bayesian geostatistical
models.

Ames may have higher average radon levels than Iowa City.
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Discussion

Model formulation

again reparameterize in terms of κ, σ2
tot

σ2
tot = σ2

z + σ2
re + σ2

e,IRLCS + σ2
e,SRRS

κ1 =
σ2

z
σ2

tot
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Discussion

Likelihood for prediction

y ∼ N
(

Xβ + K z, σ2
tot diag

( κ

N

))
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Discussion

Second and third stages

second stage

z ∼ N
(

0, σ2
tot diag(sqrt(κ)) Ω(φ) diag(sqrt(κ))

)
third stage: prior distributions on κ, σ2

tot , φ

phi ∼ U(l , r)
κ and σ2

tot get their own slides
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Discussion

Third stage: prior distributions

Suppose that independent inverse gamma priors with parameters αj

and βj have been placed on each variance σ2
j . (We parameterize the

inverse gamma density such that if Y ∼ IG(a, b) then E(Y ) = b
a−1 .)

Then the joint prior density induced on kappa and σ2
tot is

p(s1, s2, . . . , sK−1, σ
2
tot) =

K∏
j=1

 βj

Γ(αj)

1

s
αj+1
j

 1

(σ2
tot)

PK
j=1 αj+1

exp

− 1
σ2

tot

K∑
j=1

βj

sj

 ,

where sK ≡ 1−
∑K−1

j=1 sj .
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Discussion

This joint density may be factored into a marginal density for S times a
conditional density for σ2

tot given S:

p(s1, s2, .. . . . , sK−1) =
K∏

j=1

 βj

Γ(αj)

1

s
αj+1
j

 Γ
(∑K

j=1 αj

)
(∑K

j=1
βj
sj

)PK
j=1 αj

p(σ2
tot |s) is inverse gamma with parameters

∑K
j=1 αj and

∑K
j=1

βj
sj

.
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Discussion

Reformulation of entire means structure as in Hodges,
1998

(
y
0

)
=

(
X K
0 −I

) (
β

z

)
+

(
ψ
δ

)
or

Y = Q θ + E

where Y consists of known values, X is a known design matrix, θ is a
vector of unknown parameters, and ψ and δ are error vectors.
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Discussion

Covariance matrix of E

Cov
(
ψ
δ

)
= σ2

tot

(
diag(κ

n ) 0
0 diag(sqrt(κ)) Ω(φ) diag(sqrt(κ))

)
or

σ2
totΩ(φ, κ)
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