
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 891–900
Barcelona, Spain (Online), December 12, 2020.

891

NLP UIOWA at SemEval-2020 Task 8: You’re not the only one cursed
with knowledge - Multi branch model memotion analysis

Ingroj Shrestha and Jonathan Rusert
Department of Computer Science

University of Iowa
Iowa City, IA, USA

{ingroj-shrestha,jonathan-rusert}@uiowa.edu

Abstract

We propose hybrid models (HybridE and HybridW) for meme analysis (SemEval 2020 Task 8),
which involves sentiment classification (Subtask A), humor classification (Subtask B), and scale
of semantic classes (Subtask C). The hybrid model consists of BLSTM and CNN for text and im-
age processing respectively. HybridE provides equal weight to BLSTM and CNN performance,
while HybridW provides weightage based on the performance of BLSTM and CNN on a valida-
tion set. The performances (macro F1) of our hybrid model on Subtask A are 0.329 (HybridE),
0.328 (HybridW), on Subtask B are 0.507 (HybridE), 0.512 (HybridW), and on Subtask C are
0.309 (HybridE), 0.311 (HybridW).

1 Introduction

Background. With the increasing social media culture, the sharing of internet memes on social media
platforms has grown immensely in the recent years. Meme is defined as the unit of cultural information
that replicates and transmits with reliability and fecundity (Linxia and Ziran, 2006). Memes are gener-
ally an image paired with text, and used to express an array of ideas (e.g. humor, sarcasm). Memes can
be derived from pop cultures, previous experiences, or even more abstract ideas. Memes have become
a large part of internet culture, and can preserve viewpoints specific to the community from where it
originated. Memes can be used to express humor, embarrassment, hate, and even more emotions. The
creativity of memes, however, carry a downside. Hateful or offensive memes can also be created and can
lead to an increase in hate crimes (Heikkilä, 2017; Sabat et al., 2019). As with hateful language, sev-
eral social media platforms have been working on policies to control such hateful and offensive memes
while being careful not to hinder the creativity of users’ expressions through memes (Kastrenakes, 2019;
Hutchinson, 2020; Heilweil, 2020).

One of the major steps in controlling the sharing of hateful memes is being able to successfully detect
them. Detection of offensive content on social media is an ongoing task. Current attempts at detecting
offensive memes is limited. Furthermore, detecting offensive memes is more challenging than detecting
offensive text as it involves both visual and language understanding while the latter only requires lan-
guage understanding. Currently, many sites rely on human moderators to identify and remove memes
that express emotions that violate the platform’s policy. However, with the increasing use of memes
across social media platforms, handpicking offensive memes would require larger human resource and
can cause problems in scalability. Automated systems to identify the emotion of a meme could help in
a first line defense/analysis of memes and could help reduce the load on human moderators. We already
see this hybrid approach being employed for offensive and hateful text detection on several social me-
dia platforms (Yenala et al., 2018; Zhang et al., 2018), so it is only natural to extend this approach to
classifying memes as well.

In order to address the problem of detecting offensive memes as well as classifying types of memes in
general, a group of organizers created a community driven task, SemEval 2020 Task 8 (Memotion Anal-
ysis). Sharma et al. (2020) brings attention of the research community towards automatic meme emotion

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



892

analysis and allows for the examination of multiple approaches. We approach this problem with a hybrid
architecture of Convolutional Neural Network (CNN) for image classification and a Bidirectional Long
Short Term Memory (BLSTM) neural network for text classification.

2 Proposed Approach

Our goal is to capture informative features from both images and text to help the system in its classifica-
tion. To increase the usefulness of both image and text, we first fine tune a CNN on image classification
and BLSTM on text classification separately, then use a validation set to score their respective perfor-
mances. A CNN was chosen as CNNs have shown strong performance in image classification (Xin
and Wang, 2019). Likewise, BLSTMs have shown strong performance on text classification, therefore
we chose this for our framework1. We finally combine the CNN and BLSTM models using a hybrid
approach.

2.1 Text classification
To classify the text, we implement a Bidirectional Long Short Term Memory (BLSTMs) with pretrained
word embeddings. Figure 1 represents the BLSTM architecture we used.

Figure 1: BLSTM architecture

Embedding layer. The embedding layer converts the input text (input layer) to a real valued vector
using pre-trained word embeddings2 of dimension 200. The pre-trained word embeddings are obtained
from Glove (Pennington et al., 2014) word embeddings trained on English Gigaword3 and Wikipedia
data. For the words not in the vocabulary, we randomly initialed the word embedding. After preprocess-
ing, we find the longest text size (V). The input text that is shorter than the longest text size is padded
with zeros at the end. Next, the embedding layer output is fed into BLSTM layer.

BLSTM Layer. Long Short-Term Memory (LSTMs) build on top of traditional RNNs, by adding
4 gates through which input travels: ignoring (i), memory(c), forgetting (f), and selection (o). These

1We also ran preliminary tests on Logistic Regression models for both image and text, but were outperformed by the CNN
and BLSTM.

2https://nlp.stanford.edu/projects/glove/
3https://catalog.ldc.upenn.edu/LDC2011T07



893

gates aim to help the system remember the important parts of input, while forgetting the non-relevant
parts. Ignoring gates out the non relevant information from predictions. To add in longer term memory,
a memory mechanism is applied. Tied with the memory gate, the forgetting mechanism is used to help
to filter irrelevant previous prediction with old memory. Selection gate looks at possible predictions
and gates them before allowing the system to make a final prediction. The gates are represented by the
following equations:

LSTM : hl−1
t , hl

t−1, c
l
t−1 → hl

t, c
l
t

ilt
f l
t

olt
glt

 =

sigm
sigm
sigm
tanh

T2n,4n

(
hl−1
t

hl
t−1

)

clt = f l
t � clt−1 + ilt � glt

hl
t = olt � tanh(clt)

where sigm, and tanh are sigmoid and tanh activation functions,respectively. � represents element-
wise multiplication, hlt represents the hidden state at time step t for layer l, and hl−1

t is the output from
embedding layer ∈ RV ∗200 for (l = 1).

A BLSTM, a 2 directional LSTM which reads the sentence in normally (forward direction) i.e.,
−−−−→
LSTM ,

and reads the sentence in backward direction i.e.,
←−−−−
LSTM . The final learned representation of text from

BLSTM layer is
−−−−→
LSTM ⊕

←−−−−
LSTM , where ⊕ refers to concatenation.

Dense Layer. The output of BLSTM layer is flattened and fed to a dense layer of size 128 and then
fed to an output layer of size L with softmax activation, where L is the number of classes c.

2.2 Image classification

We implemented a Convolutional Neural Network (CNN) for the image classification task. Figure 2
represents CNN architecture we used.

Figure 2: CNN architecture

Input Layer. The first layer of CNN network is the input layer, which takes images, resizes them
to a dimension of w * w, where w = 224. We then fed the image to the convolutional layer for feature
extraction.

Convolutional Layer. In the convolutional layer, we use a k * k filter with a stride of s=1 and zero
padding p=0 to produce a feature map of size

(
w−k+2∗p

s + 1
)

, where k=3. The convolutional layer uses

nch = 16 output channels. So, the final output of convolutional layer (convout) is nch∗
(
w−k+2∗p

s + 1
)
∗(

w−k+2∗p
s + 1

)
.

Max Pooling Layer. A max pooling of size j ∗ j is applied to the output from convolutional layer,
where j = 2. The resulting output is

(
nch ∗ convout

j ∗ convout
j

)
.

Dense Layer. The output from max pooling is flattened and fed into a dense layer consisting 128
neurons with ReLU activation. Finally, the output is fed to the output layer of size L. The output layer
uses softmax activation function to provide the probability distribution sp for each class prediction (y).



894

2.3 Hybrid approach

In order to balance text and visual features for prediction, we use a hybrid approach. The hybrid approach
is shown in Figure 3. In the hybrid approach, we give each system, BLSTM and CNN, a weight for their
predictions, α and β respectively.
Hybrid Model Weighted (HybridE). In this approach, we set α = β = 1. We obtain probability
distribution for each class using softmax activation. We then compute element-wise sum of probability
distribution of each class obtained from two architectures (CNN and BLSTM). Finally, we take argmax
of combined probability distribution to predict final class for a meme.
Hybrid Weighted Average (HybridW)4. In this approach, the contribution (i.e., softmax distribution)
of each class is weighted by the performance (macro F1) of models α (BLSTM), and β (CNN). The
performance of models are evaluated on the validation set (described further in section 3.2). Finally, we
take argmax of the weighted probability distribution to obtain a final class for a meme.

Figure 3: Hybrid

2.4 Hyper-parameters/Tuning.

We experimented with different epochs (10, 15, 20) and batch sizes (64, 100, 150). We found an epoch
of 10 and batch size 64 (text) and 100 (image) are optimal. We use a dropout of 0.2 (CNN) and 0.5
(BLSTM) in penultimate layer to handle the issue of model overfitting. For BLSTM, we use a hidden
size (n) of 64. The model learns optimal parameters minimizing cross-entropy loss shown in equation 1a
(L = 2), equation 1b (L > 2). We use Adam optimizer with a learning rate of 0.001. We implemented
the system using PyTorch5.

−ylogsp + (1− y)log(1− sp) (1a)∑L
c=1 yo,clog(spo,c) (1b)

3 Subtasks and Dataset

SemEval 2020 Task 8 involves an overall task of analysis of memes, which is divided into three sub-
tasks – Sentiment analysis (Subtask A), Humor classification (Subtask B), and Scale of semantic classes
(Subtask C).

3.1 Subtasks Description

Subtask A. Subtask A requires a system to identify if a meme is positive, negative, or neutral (multi-class
classification).
Subtask B. Subtask B involves identification of humor expressed in meme (sarcastic, humorous, offen-
sive, motivational). This involves four binary classifications, where each of the humor is classified as
being present (e.g., sarcastic), or absent/not (e.g., not sarcastic). Overall, it is multi-label classification
task.
Subtask C. Subtasks C involves multi-class, multi-label classification. This is an extension to Subtask
B, where a system requires to quantify the extent to which a particular effect is being expressed (scale of
semantic) in a meme. With one exception (motivational), the type of humor expressed is scaled from 0

4The hybrid weighted average was performed after the Evaluation period ended.
5https://pytorch.org/



895

to 4 – not (0), slightly (1), mildly (3), and very (4). Motivational is categorized as motivational or non
motivational.
Architecture for subtasks. For each subtask, we use the same architecture (corresponding architecture
for text and image analysis – Section 2), changing only the size of L (the number of classes). For Task A,
we use L = 3. For Task B, we perform four binary classifications with L = 2 for each humor expressed.
For Task C, we perform four multi-class classifications with L = 4 for each semantic class.

3.2 Dataset Description
Training set. The organizers provided a training dataset for development of automatic meme analysis.
The training sets consist of 6992 memes. Each meme consists of five classifications (semantic classes)
- humor, sarcasm, offensive, motivational, and overall sentiment, with scale of semantic classes. These
classifications corresponds to subtasks (Section 3.1). A distribution of these sets is found in Table 1.
Testing set. The testing set consists of 1878 memes. The text was missing for several memes in the
testing set, so we added these in manually by transcribing from the provided image.

sentiment
positive 4160
negative 631
neutral 2201

(a) Subtask A

semantic present not
humorous 5337 1649
sarcastic 5443 1543
offensive 4277 2709
motivational 2465 4521

(b) Subtask B

semantic not(0) slightly(1) mildly(2) very(3)
humorous 1649 2452 2236 649
sarcastic 1543 3503 1546 394
offensive 2709 2591 1465 221

(c) Subtask C

Table 1: Class frequency distribution (Training set)

3.3 Training set Evaluation
To test our approach, we leveraged the training set, and performed train-validation split (80%-20%) to
find macro and micro F1 scores. We first describe the steps employed to work with the training data,
then give the results on the set.
Data Preprocessing. Though we presumed that the provided dataset would be set up to accommodate
each subtask in SemEval, this was not the case. This caused us to employ some preprocessing steps to
make the data more in line with the aforementioned subtasks. We remove six instances from the training
set as the text was not available for those instances. Similarly, when working with the CNN, we found
an image got GOT-Meme-9 failed to load, being corrupt. So, we remove the image from the training set.
Assigning Labels. Recall that Subtask A is a multi-class classification problem requiring for the
memes to be classified into positive, negative or neutral. The training dataset contained 5 labels:
very positive, positive, neutral, negative, very negative. We reduced the number of labels by collaps-
ing the very positive memes into the positive category, and followed the same with the very negative
memes to meet classification requirements in Subtask A. Again as previously noted, in Subtask B, a
given meme can have one of multiple binary classification labels. For example, a meme can be humor-
ous or non humorous. The same meme can be sarcastic or non sarcastic, offensive or non-offensive and
motivational or non motivational. Each of these binary classification problem in Subtask B has multiple
labels except for the motivational classification, which is why for the first three classifications task we
combined the labels to fit them for binary classification. We combined funny, very funny, and hilarious
into humorous, general, twisted meaning, and very twisted into sarcastic and slight, very offensive, and
hateful offensive into offensive. For Subtask C, the labels required no conversion.

3.4 Training set Results
We obtain results (Table 2) on gold standard training set using the aforementioned train-validation split.
Subtask A. CNN outperforms BLSTM (Table 2a) in both performance metrics (8.1% in macro F1 and
12% in micro F1). So, HybridE, which assigns equal weights to BLSTM and CNN, shows a reduction
in overall performance, achieving a macro F1 of 0.3168 and a micro F1 of 0.4850.
Subtask B. BLSTM outperforms CNN by 12.3% in macro F1 (Table 2b). On the other hand, CNN
outperforms BLSTM by 3.4% in micro F1. Due to equal weights to BLSTM and CNN, macro F1 for



896

HybridE is reduced, while micro F1 shows a slight improvement. The HybridE achieves a macro F1 and
a micro F1 of 0.4753 and 0.6197, respectively.
Subtask C. Similar to Subtask B, BLSTM and CNN show a trade-off in the two performance metrics.
Overall, the hybrid equal-weighted model achieves a macro F1 of 0.2858 and micro F1 of 0.4288.

System Macro F1 Micro F1
BLSTM 0.318 5 0.453 5
CNN 0.344 3 0.507 9
HybridE 0.316 8 0.485 0

(a) Subtask A

System Macro F1 Micro F1
BLSTM 0.521 6 0.598 6
CNN 0.464 2 0.618 7
HybridE 0.475 3 0.619 7

(b) Subtask B

System Macro F1 Micro F1
BLSTM 0.315 3 0.383 8
CNN 0.283 1 0.427 8
HybridE 0.285 8 0.428 8

(c) Subtask C

Table 2: Results on Training set

3.5 Testing set Results.
The result for our proposed approach’s performance on the Testing set for three subtasks are shown in
Table 3. On the testing set, the proposed hybrid model (HybridE) achieves a macro F1 score of 0.3287,
0.5073, and 0.3087 on Subtask A, B, and C, respectively. The HybridE model outperforms baseline (in
macro F1) in all of the subtasks (11.11% points (Subtask A), 0.71% points (Subtask B), 0.78% points
(Subtask C)). On a similar line to HybridE, the weighted hybrid model (HybridW) outperforms baselines
(provided by organizer) in both metrics.

We also can see that the HybridE favors BLSTM in macro F1 (performance is similar to BLSTM) and
CNN in micro F1 (performance is similar to CNN). The weighted average approach (HybridW) shows
little or no improvement over HybridE approach.

Subtask A. In contrast with the performance trend in Training set, BLSTM outperforms CNN by 4% in
macro F1, while CNN outperforms BLSTM by 5% in micro F1 in Testing set (Table 3a). The HybridE
favoring BLSTM, in terms of macro F1, shows an F1 score of 0.3287, which is similar to BLSTM.
Likewise, HybridE achieves micro F1 of 0.5266 (similar performance to CNN). The HybridW shows no
or little improvement in macro F1 and micro F1, respectively. HybridE performance (in macro F1) is
7.3% lower than the top system.
Subtask B. As with the Training set, BLSTM and CNN perform similarly on this subtask. On overall,
the hybrid model (HybridE) achieves macro F1 and micro F1 of 0.5073 and 0.6330 respectively (Table
3b). The HybridW shows a slight improvement in macro F1, but no improvement on micro F1. HybridE
performance (in macro F1) is similar to the top system.
Subtask C. Similar to Training set, BLSTM outperforms CNN in macro F1 by 5%, while CNN outper-
forms BLSTM in micro F1 by 8.5% (Table 3c). As mentioned earlier, HybridE favors BSLTM in macro
F1, while it favors CNN in micro F1, achieving 0.3087 macro F1 (similar performance to BLSTM)
and 0.4016 micro F1 (similar performance to CNN). The HybridW shows a slight improvement in both
performance metrics. HybridE performance (in macro F1) is 4.3% lower than the top system.

System Macro F1 Micro F1
Baseline 0.2176 0.3077
Top system 0.3547 0.4872
BLSTM 0.3287 0.4915
CNN 0.3161 0.5176
HybridE 0.3287 0.5234
∆ %∗ - 7.3% + 7.4%
HybridW 0.3284 0.5266
∆ %∗ - 7.4% + 8.1%

(a) Subtask A

System Macro F1 Micro F1
Baseline 0.5002 0.5687
Top system 0.5183 0.6145
BLSTM 0.5085 0.5994
CNN 0.4874 0.6443
HybridE 0.5073 0.6330
∆ %∗ - 2.1% + 3%
HybridW 0.5116 0.6286
∆ %∗ - 1.3% + 2.3%

(b) Subtask B

System Macro F1 Micro F1
Baseline 0.3009 0.3328
Top system 0.3225 0.3780
BLSTM 0.3122 0.3721
CNN 0.2968 0.4038
HybridE 0.3087 0.4016
∆ %∗ - 4.3% + 6.2%
HybridW 0.3111 0.4024
∆%∗ - 3.5% + 6.5%

(c) Subtask C

Table 3: Results on Testing set (∗Percentage change with respect to top system)

3.6 Class wise performance
Training set class wise results. The class wise performances for Subtask B and Subtask C on Training
set are shown in Table 4 and Table 5, respectively (Note that since Subtask A only consists of one multi-
class problem, the results are the same as shown in Table 2a). BLSTM performs better in some classes,



897

while CNN perform better in other classes. For example, BLSTM outperforms CNN in the class Sarcasm
by 11% (Table 5a). However, CNN outperforms BLSTM in the class Humor by 3.2% (Table 5a). These
results acted as a motivation for our weighted hybrid approach (HybridW).

System Humor Sarcasm Offense Motivation
BLSTM 0.542 6 0.498 9 0.527 9 0.516 8
CNN 0.475 1 0.494 4 0.476 3 0.410 8
HybridE 0.536 6 0.492 5 0.485 8 0.386 3

(a) Macro F1

System Humor Sarcasm Offense Motivation
BLSTM 0.656 7 0.650 9 0.541 7 0.545 1
CNN 0.613 2 0.733 5 0.524 4 0.603 7
HybridE 0.683 8 0.648 1 0.517 2 0.629 5

(b) Micro F1

Table 4: Class wise performance (validation set) for Subtask B

System Humor Sarcasm Offense Motivation
BLSTM 0.239 7 0.259 3 0.245 4 0.516 8
CNN 0.247 4 0.234 0 0.240 1 0.410 8
HybridE 0.251 5 0.257 6 0.247 9 0.386 3

(a) Macro F1

System Humor Sarcasm Offense Motivation
BLSTM 0.283 3 0.379 1 0.327 6 0.545 1
CNN 0.293 3 0.444 9 0.369 1 0.603 7
HybridE 0.297 6 0.440 6 0.347 6 0.629 5

(b) Micro F1

Table 5: Class wise performance (validation set) for Subtask C

Testing set class wise results. The class wise performances for Subtask B and Subtask C on Testing set
are shown in Table 6 and Table 7, respectively. We can see a drop in macro F1 for some classes on com-
bining the performances of BLSTM and CNN. For example, the macro F1 drops for the class Sarcasm
in Subtask B (Table 6a). However, we also can see that hybrid approaches help improve the overall class
wise performance for some classes. For example, macro F1 on the class Offense is 0.4928 and 0.4898
for BLSTM and CNN, respectively (Table 6a). When combining the BLSTM and the CNN results, there
is an improvement in macro F1 score (HybridE: 2.3% over BLSTM and 3% over CNN, HybridW: 3.9%
over BLSTM, and 4.6% over CNN). We can see similar observations for the class Motivation for Subtask
B (Table 6a), and Subtask C (Table 7a). Overall, the effect of hybrid approach is somewhat mixed with
respect to macro F1. We can see similar mixed performance with respect to micro F1 also (Table 6b and
Table 7b).

System Humor Sarcasm Offense Motivation
BLSTM 0.5120 0.5265 0.4928 0.5028
CNN 0.4642 0.4915 0.4898 0.5042
HybridE 0.5121 0.5039 0.5043 0.5090
HybridW 0.5106 0.5109 0.5122 0.5127

(a) Macro F1

System Humor Sarcasm Offense Motivation
BLSTM 0.6289 0.6459 0.5639 0.5591
CNN 0.7178 0.7412 0.5800 0.5383
HybridE 0.7077 0.7109 0.5655 0.5479
HybridW 0.6922 0.7093 0.5634 0.5495

(b) Micro F1

Table 6: Class wise performance (Testing set) for Subtask B

System Humor Sarcasm Offense Motivation
BLSTM 0.2461 0.2384 0.2617 0.5028
CNN 0.2092 0.2406 0.2332 0.5042
HybridE 0.2441 0.2435 0.2384 0.5090
HybridW 0.2444 0.2478 0.2400 0.5127

(a) Macro F1

System Humor Sarcasm Offense Motivation
BLSTM 0.2918 0.3088 0.3285 0.5591
CNN 0.3387 0.3988 0.3392 0.5383
HybridE 0.3142 0.4004 0.3440 0.5479
HybridW 0.3147 0.4004 0.3450 0.5495

(b) Micro F1

Table 7: Class wise performance (Testing set) for Subtask C

4 Discussion

Trade off in the performance of BLSTM and CNN. As seen in Table 3, BLSTM shows better perfor-
mance in macro F1, while CNN shows better performance in micro F1. Due to this, the hybrid model’s
performance is compromised.
Comparison of HybridE and HybridW. Overall, HybridW performs slightly better than HybridE (Sub-
task B and Subtask C) in terms of macro F1. Since there is no significant improvement, it is unclear that



898

adding extra weight really helps better to incorporate trade-off of BLSTM and CNN to capture more
informative features.
Class imbalance and effect on performance metric. Macro F1 average computes F1 for each class and
take average by treating all class equally. However, micro F1 average aggregates the contribution of each
class, and then computes the average F1. From Table 1, we can see that the distribution of class is not
balanced for each subtask. So, micro F1 scores are larger than macro F1 scores for each subtask (Table
3) since predictions favor the larger class.
Failure of transfer learning. For text analysis, we tried pre-trained BERT (Devlin et al., 2018). For
image analysis, we tried VGG16 (Simonyan and Zisserman, 2014), and ResNet18 (He et al., 2016). We
removed the last layer from each model and added a custom dense layer to fit the subtasks. We then fine-
tune using the train set. However, each model overfitted. The overfitting issue might be due to complex
architecture of pre-trained models, or due to failure to learn task specific features provided small train
set.

5 Related Work

Since the multimodal social media content has seen a steady increase in the recent years, deriving the
intended meaning from this content by establishing the connection between the image and the text has
seen an increase in research. A limited research has been done in extracting meaning from social media
images and texts, which includes identification of the humor, offensiveness or sentiment expressed in
image, text or meme.
Humor Classification. Detection of humor in image and text has been approached by several teams in
recent years. Chandrasekaran et al. (2016) analyze the humor present in abstract scenes at the scene-level
and the object level and detect different types of humor depicted in the scenes. Tsakona (2009) mentions
that the meaning and humor in a cartoon is expressed through verbal and visual mode. In order to capture
the humor expressed in the cartoon, one has to pay attention to all the verbal and visual details of the
cartoon.
Offense Classification. Recently, there has been a growing interest in identifying the offensive language
of social media data. Chen et al. (2012) presents user-level offensive language detection on social media.
This architecture uses features such as the user’s writing style, structure, and specific cyberbullying for
detecting offensiveness in the text. Wiegand et al. (2018) proposed a GermEval task for classifying
offensive language as offensive, or other, and then further classify the offensive tagged language. More
recently, Zampieri et al. (2019) ran a shared task, OffensEval, on detecting different classes of offensive
text.
Sentiment Classification. Sentiment detection in the image or text has also seen a greater focus on re-
search. Wang and Li (2015) mention that the accurate sentiment detection from internet images requires
connection between visual and textual feature. They presented the Unsupervised Sentiment Analysis
(USEA) framework to perform sentiment analysis on social media images in an unsupervised approach
using both features mentioned earlier. Borth et al. (2013) present a method built upon web mining to
automatically construct a visual detector library to detect Adjective Noun Pair in an image, which they
used to identify the sentiment from visual content.
Sarcasm Classification. Though sarcasm is not always easy to identify online, researchers have at-
tempted this with various approaches. Joshi et al. (2017) present a survey on various methods for auto-
matic sarcasm detection. They link to many sarcasm papers which include the sarcasm datasets used (e.g.
(Barbieri et al., 2014; González-Ibánez et al., 2011)) as well as sarcasm detection approachs leveraged
(e.g. (Reyes and Rosso, 2014; Rajadesingan et al., 2015)).

6 Conclusion

We analyzed texts and images from memes using BLSTM and CNN, respectively. We then propose
two hybrid approaches HybridE (equal weightage to prediction probability from BLSTM and CNN) and
HybridW (weighted average based on performance of BLSTM and CNN) to identify humor, offensive-
ness, and sentiment expressed in memes. HybridE performs better overall than the individual systems,



899

however, HybridW shows a little or no improvement over HybridE.
Limitations and Future direction. We trained models for text and image analysis separately. Perhaps,
we can feed the text output and image output into another dense layer (in a neural net). This approach
might catch some features the first missed. Also, since the deep learning model shows better performance
on a large data set, we could explore the problem on a larger data set.

References
Francesco Barbieri, Francesco Ronzano, and Horacio Saggion. 2014. Italian irony detection in twitter: a first

approach. In The First Italian Conference on Computational Linguistics CLiC-it, volume 28.

Damian Borth, Rongrong Ji, Tao Chen, Thomas Breuel, and Shih-Fu Chang. 2013. Large-scale visual sentiment
ontology and detectors using adjective noun pairs. In Proceedings of the 21st ACM international conference on
Multimedia, pages 223–232.

Arjun Chandrasekaran, Ashwin K Vijayakumar, Stanislaw Antol, Mohit Bansal, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2016. We are humor beings: Understanding and predicting visual humor. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 4603–4612.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu. 2012. Detecting offensive language in social media to protect
adolescent online safety. In 2012 International Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing, pages 71–80. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Roberto González-Ibánez, Smaranda Muresan, and Nina Wacholder. 2011. Identifying sarcasm in Twitter: a closer
look. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies: Short Papers-Volume 2, pages 581–586. Association for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Niko Heikkilä. 2017. Online antagonism of the alt-right in the 2016 election. European journal of American
studies, 12(12-2).

Rebecca Heilweil. 2020. Facebook is flagging some coronavirus news
posts as spam. https://www.vox.com/recode/2020/3/17/21183557/
coronavirus-youtube-facebook-twitter-social-media.

Andrew Hutchinson. 2020. Twitter Will Increase Its Use of Automation Tools as It Looks to En-
sure Accuracy in COVID-19 Discussion. https://www.socialmediatoday.com/news/
twitter-will-increase-its-use-of-automation-tools-as-it-looks-to-ensure-acc/
574263/.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Carman. 2017. Automatic sarcasm detection: A survey. ACM
Computing Surveys (CSUR), 50(5):1–22.

Jacob Kastrenakes. 2019. Twitter says it now removes half of all abusive tweets be-
fore users report them. https://www.theverge.com/2019/10/24/20929290/
twitter-abusive-tweets-automated-removal-earnings-q3-2019.

Chen Linxia and He Ziran. 2006. Analysis of memes in language. Foreign Language Teaching and Research, 2.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu. 2015. Sarcasm detection on twitter: A behavioral modeling
approach. In Proceedings of the eighth ACM international conference on web search and data mining, pages
97–106.

Antonio Reyes and Paolo Rosso. 2014. On the difficulty of automatically detecting irony: beyond a simple case
of negation. Knowledge and Information Systems, 40(3):595–614.



900

Benet Oriol Sabat, Cristian Canton Ferrer, and Xavier Giro-i Nieto. 2019. Hate Speech in Pixels: Detection of
Offensive Memes towards Automatic Moderation. arXiv preprint arXiv:1910.02334.

Chhavi Sharma, Deepesh Bhageria, William Paka, Scott, Srinivas P Y K L, Amitava Das, Tanmoy Chakraborty,
Viswanath Pulabaigari, and Björn Gambäck. 2020. SemEval-2020 Task 8: Memotion Analysis-The Visuo-
Lingual Metaphor! In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-
2020), Barcelona, Spain, Sep. Association for Computational Linguistics.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556.

Villy Tsakona. 2009. Language and image interaction in cartoons: Towards a multimodal theory of humor.
Journal of Pragmatics, 41(6):1171–1188.

Yilin Wang and Baoxin Li. 2015. Sentiment analysis for social media images. In 2015 IEEE International
Conference on Data Mining Workshop (ICDMW), pages 1584–1591. IEEE.

Michael Wiegand, Melanie Siegel, and Josef Ruppenhofer. 2018. Overview of the germeval 2018 shared task on
the identification of offensive language.

Mingyuan Xin and Yong Wang. 2019. Research on image classification model based on deep convolution neural
network. EURASIP Journal on Image and Video Processing, 2019(1):40.

Harish Yenala, Ashish Jhanwar, Manoj K Chinnakotla, and Jay Goyal. 2018. Deep learning for detecting inappro-
priate content in text. International Journal of Data Science and Analytics, 6(4):273–286.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019.
SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval). In
Proceedings of The 13th International Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper. 2018. Detecting hate speech on twitter using a convolution-gru
based deep neural network. In European semantic web conference, pages 745–760. Springer.


