Results from MathSciNet: *Mathematical Reviews* on the Web © Copyright American Mathematical Society 2002

2002c:46117 46L10 37C30 42A16 42A65 43A65 47B38 Jorgensen, Palle E. T.

Ruelle operators: functions which are harmonic with respect to a transfer operator. (English. English summary)

Mem. Amer. Math. Soc. 152 (2001), no. 720, viii+60 pp.

Let $N \geq 2$ be an integer. Denote by \mathfrak{A}_N the (universal) C^* -algebra generated by two unitaries U and V satisfying $UVU^{-1} = V^N$. Motivated by wavelet analysis, the author studies a class of representations of \mathfrak{A}_N that we describe below. The idea rests on a construction of scaling functions from low-pass filters due to S. G. Mallat [Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87; MR 90e:42046]. Before describing an account of the main result, we need some preliminary considerations.

First, there is a one-to-one correspondence between representations of \mathfrak{A}_N (i.e. realizations of U and V as unitary operators U_{π} and V_{π} such that $U_{\pi}V_{\pi}U_{\pi}^{-1} = V_{\pi}^N$) and pairs (π, U_{π}) , where π is a representation of $L^{\infty}(\mathbb{T})$ and U_{π} is a unitary operator such that

$$U_{\pi}\pi(f)U_{\pi}^{-1} = \pi(f(z^N)), \quad f \in L^{\infty}(\mathbb{T}).$$

In fact, $V_{\pi} = \pi(e_1)$, where $e_n(z) = z^n$, $n \in \mathbb{Z}$. Moreover, the representation is said to be normal if it admits a cyclic vector φ such that the spectral measure of V_{π} associated to φ is absolutely continuous with respect to Haar measure on \mathbb{T} .

Next, let $m_0 \in L^{\infty}(\mathbb{T})$ be a low-pass filter. The associated Ruelle transfer operator is defined on $L^1(\mathbb{T})$ by

$$(Rf)(z) = \frac{1}{N} \sum_{w^N = z} |m_0(w)|^2 f(w).$$

Then the main theorem of the article establishes a relationship between the operator R and normal representations of \mathfrak{A}_N as follows: Suppose that we are given a normal representation π of \mathfrak{A}_N with cyclic vector φ satisfying $U_{\pi}\varphi = \pi(m_0)\varphi$; define $h_{\varphi} \in L^1(\mathbb{T})$ by

$$h_{\varphi}(z) = \sum_{n \in \mathbb{Z}} z^n \langle \pi(e_n) \varphi | \varphi \rangle.$$

Then $Rh_{\varphi} = h_{\varphi}$. Conversely, if $h \in L^1(\mathbb{T})$, $h \ge 0$, is a solution to Rh = h, then there is a normal representation with cyclic vector φ such that $h = h_{\varphi}$. Moreover, one has uniqueness up to unitary equivalence.

Paul Jolissaint (CH-NCH)