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A
math story: When I was little, growing
up in Denmark, before kindergarten—
only there wasn’t any then—so before
I heard of The Tinder Box or The Ugly
Duckling from the books of Hans Chris-

tian Andersen, my father told me about low-pass
and high-pass filters. He was a telephone engineer
and worked on the filters used in signals trans-
mitted over long cables, just after World War II. The
“high” and “low” part of the story refers to fre-
quency bands of the sound signals. Not that this
meant much to me at the time. Rather, I was fas-
cinated by the pictures in the electrical engineer-
ing journals that were stacked up on the floor next
to me, and I spent hours looking at them (that was
all there was, there on the floor!), so these pic-
tures1 of filter design, some in color, occupied me
on long Sundays while my dad was building in-
struments in the living room. Nothing else for me
to do! Then, after going to school I forgot all about
my dad’s explanation of quadrature mirror filters
(no wonder!) and they were out of mind for a very
long time. I never had any particular reason to
think much about them at all, I mean the low-pass
frequency bands and all that, but I am sure they in
some strange way created a lasting visual impres-

sion on me. If I heard them mentioned later, I might
have been slightly amused but no more than that.
Perhaps not before wavelet math, or rather my in-
terests in wavelets in the late 1980s, did all of that
stuff about frequency bands gradually resurface
from out of a mist recalled from the back reaches
of my mind.

It was only after I grew up and matured that I
realized how these subband filters define operators
in Hilbert space which satisfy all kinds of abstract
relations, now known as Cuntz and Cuntz-Krieger
relations and thought in some circles to have been
invented in 1977 by Cuntz or in 1965 by Dixmier.
These are tools from math that I had gotten in-
volved with in the late 1970s for completely dif-
ferent reasons. My impression is that the operator
relations that are called the Cuntz relations in
math go way back, probably back to before I was
born, and they are and have been used every day,
and twice on Sundays, ever since by signal pro-
cessing engineers and others I probably don’t even
know about—in addition to their extensive use in
several areas of math! Our matrix functions from
math are actually called polyphase matrices by en-
gineers, and they are scattering matrices in other
circles, and quantum gates in physics. In fact a lot
of the things we do in operator theory are known
and used in other fields but are known under dif-
ferent names and in different ways. And important
for different reasons! In any case, they are really
important and for all kinds of good reasons, not
least of which is their rediscovery in operator al-
gebras and in wavelets.

Discussions between engineers and mathe-
maticians, both pure and applied, have always
seemed to me somewhat surrealistic. Independent
lines of thinking fortuitously converge on a com-
mon ground of some algorithms and some matrix
tricks, but the strands might well come from vastly
different vantage points in their approach to a par-
ticular subject, reflected in the multiplicity of
terminology that is used, i.e., the same mathemat-
ical term being assigned different names by the
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different groups, and yet the discussion is about
the same fundamental underlying idea. See an ab-
breviated dictionary at the end of this paper. The
diverse approaches share a common central math-
ematical concept. I think few of us so far really have
made a conscious effort to articulate this in a way
that rings bells with all the diverse communities:
(1) the telephone engineer who is wondering about
signals with discrete time and trying to model the
transmission of sound in optical cables and work-
ing on filtering out noise in the receiving end;
(2) the graphics designer from computer science or
from computational geometry who is doing sub-
divisions; (3) the engineer who is building chips for
data compression in his/her attempts at digitizing
archives of fingerprints stored in analog form or
chips for JPEG 2000 implementations; and, finally,
(4) the mathematician, perhaps the last one in the
bunch, who is searching for wavelets with the best
smoothness or wavelets with a shorter pyramid al-
gorithm. Each one of them, the practitioner from
one or the other of the communities, invents his
or her tools quite independently of the others; and
the connections, those that are understood up to
now, are only realized with hindsight, often only
much later, after the fact. But we have to first look
for these connections, and this present attempt is
the tip of the iceberg—a start, at least.

What Is a Wavelet? In its simplest form, it is a
function ψ on the real line R such that the dou-
bly indexed family 

{
2n/2ψ (2nx− k)

}
n,k∈Z provides

a basis for all the functions in a suitable space
such as L2 (R) . Since L2 (R) comes with a norm and
inner product, it is natural to ask that the basis func-
tions be normalized and mutually orthogonal (but
many useful wavelets are not orthogonal). The
analog-to-digital problem from signal processing
concerns the correspondence

(1) f (x) ←→ cn,k

for the representation

(2) f (x) =
∑
n∈Z

∑
k∈Z
cn,k2n/2ψ (2nx− k) .

We will be working primarily with the Hilbert space
L2 (R) , and we allow complex-valued functions.

Hence the inner product 
〈
f | g〉 = ∫ f (x)g (x) dx

has a complex conjugate on the first factor in the
product under the integral sign. If f represents a
signal in analog form, the wavelet coefficients cn,k
offer a digital representation of the signal, and the
correspondence between the two sides in (1) is a
new form of the analysis/synthesis problem, quite
analogous to Fourier’s analysis/synthesis problem
of classical mathematics. One reason for the suc-
cess of wavelets is the fact that the algorithms for
the problem (1) are faster than the classical ones
in the context of Fourier.

Other efficient algorithms include the fast
Fourier transform [Wic94] applied to digitized sig-
nals. It is based on dyadic scaling, a feature it
shares with the hierarchical wavelet algorithms.
But the latter have further advantages related to
localization (see, e.g., [Mal99] and [Mey00, §11]): At
discontinuities or sharp spikes, the edge effects for
wavelet algorithms in the analog-to-digital problem
are moderate, and they do not build up as in the
Gibbs phenomenon with Fourier-based tools. An in-
trinsic feature of the subdivision scheme of
wavelets is that the edge effects are concentrated
in a few large wavelet coefficients, allowing us to
neglect the rest; the asymptotic gain compared to
Fourier series is exponential. A color picture is
usually made up of a few homogeneous chunks of
different colors or shades, one separated from the
others by edges. It is for this reason that the wavelet
algorithm is so much more efficient in digitizing
graphics than are the alternative Fourier-based al-
gorithms. Similarly, for signals, wavelet analysis
breaks up f (x) into its frequency components, with
each component in a resolution in time that is
matched to its scale.

Resolution and Detail
Mathematically, a multiresolution is a telescoping
family of closed subspaces in some Hilbert space,
doubly infinite but generated by a single operator
U and a single subspace V0. The operator U rep-
resents some scaling, and V0 some fixed resolution,
for example, step functions of step size one; the
larger spaces in the family represent a finer reso-
lution, and the smaller spaces coarser resolutions.
When applied to signal processing or to optics,
each resolution space is assigned a band of fre-
quencies.

Matrix factorizations have a long history as a tool
for designing fast algorithms. Factorizations have
been used from the beginning in classical algo-
rithms of signal processing and, more recently, in
wavelet subdivision schemes. Since algorithms for
quantum information are also based on factoriza-
tion of unitary matrices, it is not surprising that the
subdivision-wavelet algorithms have proved to
adapt especially well to the realm of qubits in quan-
tum theory: see, for example, [PBK03] in the case
of the Grover search algorithm.

The wavelet algorithms can be cast geometrically
in terms of subspaces in Hilbert space which de-
scribe a scale of resolutions of some signal or some
picture. They are tailor-made for an algorithmic
approach that is based upon unitary matrices or
upon functions with values in the unitary matrices.
Wavelet analysis takes place in some Hilbert space
H of functions on Rd, for example, H = L2

(
Rd
)
.

An indexed family of closed subspaces {Vn}−∞<n<∞
such that
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Vn ⊂ Vn+1,
⋂
n∈Z
Vn = {0} , and

∨
n∈Z
Vn = L2

(
Rd
)

(3)

is said to offer a resolution. (To stress the variety
of spaces in this telescoping family, we often use
the word multiresolution.) Here the symbol 

∨
de-

notes the closed linear span. In pictures, the con-
figuration of subspaces looks like:

The subspaces of a resolution

Remember when shopping for a new digital
camera: just as important as the resolutions them-
selves (as given here by the scale of closed sub-
spaces Vn) are the associated spaces of detail. As
expected, the details of a signal represent the rel-
ative complements between the two resolutions, a
coarser one and a more refined one. Starting with
the Hilbert-space approach to signals, we are led
to the following closed subspaces (relative or-
thogonal complements):

Wn := Vn+1 �Vn(4)

= {f ∈ Vn+1 : 〈f | h〉 = 0, h ∈ Vn} ,
and the signals in these intermediate spaces Wn
then constitute the amount of detail which must
be added to the resolution Vn in order to arrive at
the next refinement Vn+1. In the diagram below, the
intermediate spaces Wn of (4) represent incre-
mental details in the resolution.

Incremental Detail

The simplest instance of this is the one which Haar
discovered in 1910 [Haa10] for L2 (R) . There, for
each n ∈ Z, Vn represents the space of all step
functions with step size 2−n , i.e., the functions f on
R which are constant in each of the dyadic inter-
vals j2−n ≤ x < (j + 1

)
2−n , j = 0, . . . ,2n − 1, and

their integral translates, and which satisfy
‖f‖2 =

∫∞
−∞ |f (x)|2 dx <∞ . The inner product for

Haar is the familiar one,

(5) 〈f | h〉 =
∫∞
−∞
f (x)h (x) dx,

and similarly for our present L2
(
Rd
)
, with the

modification that the integration is now over Rd.
An operator U in a Hilbert space is unitary if it

is onto and preserves the norm or, equivalently, the
inner product. Unitary operators are invertible,
and U−1 = U∗ where the ∗ refers to the adjoint. Sim-
ilarly, the orthogonality property for a projection
P in a Hilbert space may be stated purely alge-
braically as P = P2 = P∗ . The adjoint ∗ is also 
familiar from matrix theory, where (A∗)i,j = Aj,i : 
in words, the ∗ refers to the operation of trans-
posing and taking the complex conjugate. In the 

matrix case, the norm on Cn is 
(∑

k |xk|2
)1/2

. In in-
finite dimensions, there are isometries which map
the Hilbert space into a proper subspace of itself.

For Haar’s case we can scale between the reso-
lutions using f (x) � f (x/2), which represents a
dyadic scaling.

To make it unitary, take

(6) U = U2 : f � �→ 2−
1
2 f
(x

2

)
,

which maps each space Vn onto the next coarser
subspace Vn−1, and ‖Uf‖ = ‖f‖ , f ∈ L2 (R) . This
can be stated geometrically, using the respective
orthogonal projections Pn onto the resolution spaces
Vn, as the identity

(7) UPnU−1 = Pn−1.

And (7) is a basic geometric reflection of a self-sim-
ilarity feature of the cascades of wavelet approxi-
mations. It is made intuitively clear in Haar’s sim-
ple but illuminating example, included below. The
important fact is that this geometric self-similar-
ity, in the form of (7), holds completely generally.
Moreover, it serves as a tool for generating new
wavelets and for analyzing them. A crucial obser-
vation Haar made in his 1910 paper was that the
box-wavelet of Figure 1 is actually singly generated.
Without making it explicit, Haar also further noticed
a special case of what is now called multiresolution
analysis (MRA). Haar considered the two functions
(8) ϕ = χ[0,1) and ψ = χ[0,1/2) − χ[1/2,1)

shown in Figures 1(a) and 1(b), where we use χ to
denote the indicator function. With these two func-
tions, ϕ and ψ , it is clear that

Figure 1. Haar wavelet functions.
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V0 =
∨
{ϕ ( · − k) : k ∈ Z} and

W0 =
∨
{ψ ( · − k) : k ∈ Z} ,

where 
∨

denotes the closed linear span of the
functions inside { }. Similarly, using the translation
operators(

Tyf
)

(x) := f (x− y) , f ∈ L2 (R) , y ∈ R,

and the relation

(9) UTyU−1 = T2y , y ∈ R,

we get

(10)
ϕ (x) =ϕ (2x)+ϕ (2x− 1) ,
ψ (x) =ϕ (2x)−ϕ (2x− 1) ,

and, for each n ∈ Z,

(11) Vn=
∨
k∈Z
ϕ (2nx− k) ,

representing the closed subspace generated by all
the Z-translates as specified, and

(12) Wn =
∨
k∈Z
ψ (2nx− k) .

From Haar to Daubechies
While the identities (10) and the properties sketched
in (11) are in fact clear from inspection of the
shapes in Figure 1, the first surprise in wavelet the-
ory is that smooth wavelet shapes, represented by
differentiable functions ϕ and ψ of compact sup-
port, are also possible and with the functions sat-
isfying the exact same resolution properties which
were first noticed in a very special (nonsmooth) case
by Alfred Haar. We now turn to this crucial issue.

The issue of differentiability of wavelets is a
rather large subject. We will only be able to touch
on it here. Our viewpoint is that when the support
size is specified, then we are able to display a cor-
responding variety of wavelets. The next step then
is to identify the most differentiable specimens in
the variety. This is in fact an area with current and
exciting research, much of it dictated by applica-
tions, but to get started we first need easy matrix
formulations which facilitate computations. The
tools are somewhat technical. Here is a sample of
them, identified by their technical names: (i) the van-
ishing moment method (based on polynomial fac-
torization), (ii) the joint spectral radius method (a
clear-cut test, but difficult to apply), (iii) the dom-
inant eigenvalue test (sketched in Figure 5 below),
(iv) the spin vector test. This last one amounts to
writing the so-called polyphase matrix function
z � G (z) as a product of matrix functions zp + p⊥
where p is a rank-one projection in some CN; i.e.,
p is the projection onto some v ∈ CN, ‖v‖ = 1. By

adjusting the configuration of vectors v con-
tributing to the product factorization for G (z), the
more differentiable wavelets can be identified with
a search algorithm. The graphics around Figures 5
and 6 may help the reader to visualize method (iv).
Figure 6 picks out a particular sample of configu-
rations of two spin vectors. We explain below how
variations of a single unit vector v in C2 describe
a variety of dyadic wavelets supported from 0 to
3 on the x-axis, while two independently moving
spin vectors, i.e., unit vectors v1 and v2 in C2, de-
scribe the variety of wavelets supported in [0,5].

Hermitian projections, especially finite-dimen-
sional and one-dimensional ones, along with 
issues arising from their interactions and compo-
sitions, form a chapter of lore in complex geome-
try and in complex Hilbert space as it is used in
quantum theory. This framework describes the
wavelet varieties perfectly: First recall that the
complex n-dimensional subspaces in CN are 
viewed as, and are by definition, points in the
Grassmannian G (n,N). And, starting with Wolf-
gang Pauli, n = 1, N = 2, it is popular to identify
points in three pairwise isomorphic manifolds,
(A)–(C), described as follows (for details see, for ex-
ample, [BrJo02]): (A) G (1,2); (B) the two-sphere S2,
which goes under the name “the Bloch sphere” in
physics circles (to Pauli, a point in S2 represents
the state of an electron or of some spin-1/2 parti-
cle, and the points in the open ball inside S2 rep-
resent mixed states); and, finally, (C) equivalence
classes of unit-vectors in C2, where equivalence of
vectors u and v is defined by u = cv with c ∈ C,
|c| = 1. With this viewpoint, a one-dimensional
projection p in CN is identified with the equivalence
class defined from a basis vector, say u, for the one-
dimensional subspace p

(
CN
)

in CN. A nice feature
of the identifications N = 2 is that if the unit-
vectors u are restricted to R2, sitting in C2 in the
usual way, then the corresponding real submani-
fold in the Bloch sphere S2 is the great circle: the
points (x, y, z) ∈ S2 given by y = 0. To Pauli, S2, as
it sits in R3, helps clarify the issue of quantum ob-
servables and states. Pauli works with three spin-
matrices for the three coordinate directions, x, y,
and z . They represent observables for a spin-1/2
particle. States are positive functionals on observ-
ables, so Pauli gets a point in R3 as the result of
applying a particular state to the three matrices.
The pure states give values in S2. Recall that pure
states in quantum theory correspond to rank-one
projections or to equivalence classes of unit-vectors.
When this viewpoint is applied to the wavelet for-
mulation, we get an economical way of identifying
the essential wavelet numbers, i.e., the masking co-
efficients for the subdivisions of wavelet theory. 

Most of the geometry we recall here carries over
mutatis mutandis to unit-vectors in CN. In the wavelet
case, the number N represents a fixed scaling. Now
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the Grassmannian is G (1,N) , N > 2, but the ana-
logue of the Bloch sphere is a little more compli-
cated. It is worked out in geometry books, such as
that of R. O. Wells Jr. [Wel80]. What is considerably
more complicated mathematics is the parameter-
ization of the variety of states corresponding to sev-
eral particles. It involves the notion of entanglement
from quantum theory. For the present purpose, we
use a finite set of projections p corresponding to
the special (zp + p⊥)-factors in a factorization of
our polyphase matrix G (z), describing a particular
wavelet.

The existence of certain differentiable wavelets
was discovered in the 1980s; see especially [Dau92].
I. Daubechies’s, Y. Meyer’s, and A. Cohen’s pio-
neering discoveries opened a floodgate. Since then,
new and powerful methods and techniques have
emerged that provide constructive algorithms for
optimal choices of resolutions and wavelets. These
more recent methods, motivated by signal pro-
cessing, include (i)–(iv) above, and they give exis-
tence generally for signals of compact support, rep-
resented by compactly supported functions in
L2
(
Rd
)
. They are also at the core of the many suc-

cess stories of wavelet algorithms [Coh03], [Mey00]
and of harmonic analysis [HeWe96].

When the first wavelet constructions came out
in the early 1980s, their significance was in fact not
readily accepted or understood, in some cases not
believed. Perhaps the first example of J.-O. Ström-
berg [Str82] was stillborn! What really opened up
the subject and enriched both theory and applica-
tions was the connection to signal processing. From
that came the multiresolutions, the pyramid algo-
rithms, and the applications to data compression,
to still image encoding, and more. Connections to
signal processing are made in [Dau92] and espe-
cially in [Mal99]. Clearly the geometric relations (10),
so transparent from Figure 1(a)–(b), invite the fol-
lowing generalization. It takes the form of subdi-
vision operations with masking coefficients, pop-
ular in numerical analysis:

ϕ (x) =
√
|detA|

∑
k∈Zd

akϕ (Ax− k) ,(13)

ψi (x) =
√
|detA|

∑
k∈Zd

b(i)
k ϕ (Ax− k) ,(14)

i = 1, . . . , |detA| − 1.

The numbers (ak) in (13) are called masking coef-
ficients because of the use of (13) in graphics al-
gorithms: there the a-numbers represent the masks
in the successive subdivision steps of the algo-
rithm. Here (ak) and (b(i)

k ) are scalar sequences in-
dexed by the lattice Zd, and A is a fixed d × d ma-
trix over Z. We will assume that the eigenvalues λ
of A satisfy |λ| > 1. This generalizes Haar’s ex-
pansive scaling x→ 2x. It is known generally that

the wavelets of compact support may be described
this way using specific systems (ak) and (b(i)

k ) of fi-
nite sequences, i.e., sequences which are identi-
cally zero outside a finite subset, Λ say, of Zd:
specifically, ak = 0 for all k ∈ Zd \Λ, and similarly
for the sequence (b(i)

k )k∈Zd , i = 1, . . . , |detA| − 1. It-
eration algorithms are used in the solution to the
system (13)–(14). When solutions ϕ and ψi to this
system can be found in L2

(
Rd
)
, then the starting

point of the hierarchical wavelet algorithm is the
recursive buildup of the subspaces Vn and Wn of
(3)–(4) with the use of formulas (19)–(21) below. This
can be done with finite matrix algorithms known
as subdivision algorithms; see [BrJo02], [Mal99], and
[Wic94]. The recursive construction may be visu-
alized in the next example but in a context of frac-
tals.

Example. Cloud Nine as a Reptile. (The name rep-
tile refers to a tiling property which is self-repro-
ducing in the sense that the picture repeats itself
at all scales.) As an example of (13), take d = 2 and

A =
(

1 2
−2 1

)
. Then N = detA = 5, and the five

lattice points D =
{(

0
0

)
,
(
±3
0

)
,
(

0
±2

)}
represent

all the five residue classes for the quotient group
Z2/AZ2 . The formula ϕ (x) =∑d∈D ϕ (Ax− d) is
then a special case of the scaling equation (13), and
it is at the same time a natural extension of Haar’s
equation (10). It has a solution ϕ = χT, and the 
compact set T ⊂ R2 is the unique solution to the
so-called reptile equation AT = ⋃d∈D (T+ d) ; 
see also Figure 2. It is shown in [BrJo99] that T
tiles R2 with translations chosen from the lattice

Λ =
{(

l
2m

)
: l,m ∈ Z

}
. It follows from this that

the measure of T is 2. Then T is a reptile or a gen-
eralized Haar wavelet. In general, the measure of
a reptile is an integer. It is known, however, that
in R4 there are 4-by-4 expansion matrices A over
Z for which generalized Haar wavelets do not exist.
In 4-D for special matrices A , it may be that the
reptiles generated by this scheme might not tile by
a lattice which would turn them into Haar wavelets.

Georg Cantor’s Chaos
Note that the generalization from the so-called re-
finement equation in the form (10) of Haar to the
general case (13) is not just a jump in dimension,
from 1 to d—that is not even the main point. The
main issue is identifying the L2-solutions to (13);
then (14) comes along for free. To understand this,
consider the seemingly trivial modification of (10)
into

(15) ϕ (x) = 3
2

(ϕ (3x)+ϕ (3x− 2)) .
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Forgetting functions as solutions ϕ, try tempered
distributions. Then a Fourier transform of (15)
yields

(16) ϕ̂
(
ξ
) = e−iξ/2 ∞∏

n=1

cos
( ξ

3n

)
.

It can be checked that, up to normalization, this is
the unique solution and that ϕ is the singular Can-
tor measure and in particular a tempered distribu-

tion corresponding to the middle-third construc-
tion. Hence this ϕ is the unique measure satisfy-
ing

(17)
∫
R
f (x) dϕ (x)

= 1
2

(∫
R
f
(x

3

)
dϕ (x)+

∫
R
f
(x+ 2

3

)
dϕ (x)

)

and ϕ is supported in the set of Figure 3. The use
of the Fourier transform in (16) makes perfectly
good sense, even if ϕ is not a locally integrable
function on R . It would make sense even if we
only knew a priori that ϕ was a compactly sup-
ported distribution: then for each ξ ∈ R we would
define ϕ̂

(
ξ
)

as the distribution ϕ applied to the
C∞-function x� e−iξx . In actual fact, the iteration
algorithm based on (17) which is illustrated in Fig-
ure 3 shows that ϕ is the Cantor measure. Hence

ϕ̂
(
ξ
) = ∫ e−iξx dϕ (x) .

For the general theory of affine iteration systems,
fractal limits, and their harmonic analysis, the
reader is referred to [JoPe98] and [DiFr99].

Groups of Wavelets
The formulas (6) and (9) from Haar carry over to
the general case as follows. Consider a d × d in-
vertible matrix A over Z. With scaling in the form

U : f � �→ |detA|−1/2 f
(
A−1x

)
,

x ∈ Rd, f ∈ L2
(
Rd
)
,(18)

we have

(19) UTyU−1 = TAy, y ∈ Zd.

Note that Ay ∈ Zd for y ∈ Zd if the matrix A is in-
tegral. Moreover, generalizing (11)–(12), we get

(20) Vn=
∨
ϕ (Anx− k) ,

(21) Wn =
∨
k∈Zd

i=1,...,|detA|−1

ψi (Anx− k) ,

2The name here is from [BrJo99]; the picture represents
a dynamical systems orbit of order 9.
3Take a geometric figure, replicate it five times, in the
original location, three units to the right, two units above,
two units below, and three units to the left. Then shrink
the whole collection to the same size as the original was
and rotate it by a “knight’s move” angle. Repeat the
process any number of times (here seven). If the initial
figure is suitably chosen, the figures never overlap, and
the collection tiles the plane by the same lattice at each
stage of the iteration. Continuously varying colors as-
signed to the pieces in the order they were created show
how the parts interpenetrate at every stage of iteration.
See the cover of this issue for another graphical rendi-
tion of this fractal tile.

Figure 2. A Rep-Tile: The tile T from the “Cloud
Nine” Example.2 The picture is a result of
iterating  five linear maps, all having an
expansive scaling matrix of determinant 5. The
result is an exotic “tiling” of the plane.3 The
boundary of the tile is a fractal, like the self-
similar structures that occur in biological
systems, in correlations of fluids at critical
phase transitions, and in conditions of
turbulent flow.

Figure 3. Iteration leading to Cantor-set support of ϕ in (15).
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provided the coefficients in (13)–(14), called mask-
ing coefficients, satisfy the following orthogonal-
ity relations (where we have set b(0)

k := ak):
∑
k∈Zd

∣∣∣b(i)
k

∣∣∣2 = 1(22)

for all i (normalization), and∑
k∈Zd

b(i)
k b

(j)
k−Al = 0(23)

for all i ≠ j , and l ∈ Zd (orthogonality).

Introducing the d-torus as Td = Rd/Zd, it is shown
in [BrJo02] that the system (22)–(23) is equivalent
to specifying a function from Td into the N ×N uni-
tary matrices, where N = |detA|. Since the matrix
A is fixed and integral, the matrix multiplication
on Rd, x→ Ax , passes to the quotient Td = Rd/Zd,
and the induced mapping TA is N-to-1.

We now describe an isomorphism between the
wavelet systems (22)–(23) and the loop group ele-
ments. (The group G of measurable functions from
Td to the matrix group UN (C) is called the loop
group.) Using a finite Fourier transform, we get a
function-valued inner product, for functions on Td :

(24)

〈p | q〉A (z) = 1
N

∑
w∈Td
TAw=z

p (w )q (w ) , z ∈ Td,

where p and q vary over all scalar-valued func-
tions on Td . In Haar’s case the sum on the right-
hand side in (24) is over ±√z. The application is
to the case when these functions are

m(j) (z) :=
∑
k∈Zd

b(j)
k zk, j = 1, . . . ,N − 1,

where zk := zk1
1 z

k2
2 · · ·zkdd , and z ∈ Td. Using the

standard inner product on CN, it is therefore nat-
ural to extend (24) to the case of vector-valued
functions p : Td → CN , and revise (24) to

(25) 〈p | q〉A (z) = 1
N

∑
w∈Td
TAw=z

〈p (w ) | q (w )〉CN .

The key step in the identification of the solutions
to (22)–(23) with the group G of matrix functions
G : Td → UN (C) is now the following lemma.

Lemma . The group G of all functions
G : Td → UN (C) from the d-torus into all the N ×N
unitary matrices acts transitively on vector functions
m on Td as follows: m �mG, where mG (z) :=
G(TAz)m(z) , and the pointwise product is matrix
times column vector.

Note (recalling that the inner product (25) takes
values in functions on Td ) that this is a unitary ac-
tion relative to the functional inner product (25) in

the sense that the unitarity identity 
〈
mG | pG〉A =

〈m | p〉A holds for all G ∈ G . The term

‖m (z)‖2 = 〈m (z) |m (z)〉CN =
N−1∑
k=0

|mk (z)|2

measures the total contribution to a subband fil-
ter system, the N frequency bands being indexed
by the cyclic group of order N, and the summation
taken over the individual bands. Hence, the lemma
states that this total contribution is constant under
the specified action of the group G of unitary ma-
trix functions, the so-called polyphase matrices. For
more details on the terminology of filters and ma-
trix functions, see the list at the end of the paper.

If A is a given scaling matrix, i.e., a d × d ma-
trix over Z with eigenvalues |λ| > 1 , and
N := |detA| , then the corresponding filters m have
N subbands and are considered as functions from
Td to CN. With a slight abuse of notation, we say
that m is a quadrature mirror filter (QMF) if〈
mi (z) |mj (z)

〉
A = δi,j , z ∈ Td, where 〈 · | · 〉A is

the form in (24). It follows from the lemma and an
easy calculation that if m and m′ are any two given
QMF’s corresponding to the same scaling matrix A ,
then the functions

Gi,j (z) = 〈mj (z) |m′
i (z)

〉
A , z ∈ Td,

are matrix entries of a polyphase matrix G , i.e.,
G ∈ G , and m′ =mG. In other words, G transforms
the first QMF m into the second m′ , and G is de-
termined uniquely from m and m′ .

Examples
The significance of the approach via matrix func-
tions is that it offers easy formulas for the num-
bers which encode our wavelet functions, ϕ, ψ (if
the scale number N is 2), and ϕ, ψ1, . . ., ψN−1 in
general. Haar’s two functions ϕ and ψ are sup-
ported in the unit interval [0,1], and Daubechies’s
father function ϕ and mother function ψ are sup-
ported in [0,3]. Then there is a next generation, still
for N = 2, where ϕ and ψ are both supported in
[0,5]. In terms of the matrix function G (z), the
case of [0,1] is the constant function

G(z) = H = 1√
2

(
1 1
1 −1

)
,

the next one is of the form G (z) = H (zp + p⊥)
where p is a rank-1 projection in C2 and p⊥ = I − p.
As p varies, we get the wavelet functions with
support in [0,3]. With two rank-1 projections p1, p2

in C2 and G (z) =H (zp1 + p⊥1
) (
zp2 + p⊥2

)
, we get

the wavelet functions supported in [0,5]. The
simplest way of reading off the matrix function G
which corresponds to a system of masking
coefficients
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(
a0 a1 a2 a3

b0 b1 b2 b3

)
is to set A =

(
a0 a1

b0 b1

)
,

B =
(
a2 a3

b2 b3

)
, and G (z) = A+ zB. The reader

will be able to construct the higher-order cases by
generalization, or he/she may consult [BrJo02].

The World of the Spectrum
The theme of this section is that central properties
of wavelets depend on the spectrum of a certain
operator R, named after David Ruelle [Rue69], 
and also called the wavelet-transfer operator. In 
the present context, the operator R may be real-
ized on sequences (xk)k∈Zd as follows: (Rx)k =∑
j∈Zd RAk−jxj where Rk =

∑
j∈Zd ājaj+k, the num-

bers (ak)k∈Zd are the masking coefficients in (13),
and A is the expansive matrix which defines our
subdivision. Let ε ∈ R+. On the Hilbert space Hεof

sequences (xk)k∈Zd such that 
∑
k∈Zd |xk|2 eε|k| <∞,

R acts as a trace class operator. Its spectrum is in-
dependent of ε. See (32) below for details.

Illustration: Spread out over the area of Figure
4 is a family of wavelets, each generating function
(scaling function) ϕ determined by two parameters.
Once we have the algorithm for the scaling func-
tion, an extra step automatically gets us the wavelet
itself. There is a coordinate system of wavelets on
the interval [0,5] with their associated scaling func-
tions; see Figure 4. Since vectors move invariantly
under unitary transformations, it is reasonable to
expect that varieties of wavelets may be parame-
terized in a way that is analogous to how we do the
classical unitary groups. This will be illustrated in
the following graphics experiment.
Wavelets on the Interval [0,5] and Their
Associated Scaling Functions
The scaling functions ϕ for these wavelets, one for
each sample point represented in Figure 4, are pic-
tured in this wall decoration, i.e., in Figure 4. The
algorithm used in generating each of the functions

Figure 4. Two-parameter family of wavelet scaling functions.
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ϕ in the little rectangles of Figure 4 will be outlined
in the discussion below (26). However, Figure 4 is
in fact a sampling from a two-parameter variety of
orthogonal wavelets. (It is only a variety, because
there are isolated points where the strict orthogo-
nality property degenerates!) More precisely, we are
looking at a genus-2 surface, but with deletion of
these degenerate or singular points: In the overall
landscape of Figure 4, these points are visibly rep-
resented by little flat scaling functions ϕ with sup-
port of length 3 or 5. (Remember the “honest”
Haar wavelets are supported on an interval of unit
length!) What is more significant, and also clearly
visible in Figure 4, is the fact that “most of” the func-
tions ϕ in the variety are pretty bad! The nicest that
can be said about them is that they are L2, and that
is not all bad. (Remember the Devil’s staircase func-
tion from Figure 3 with its support on the Cantor
set. As a scaling function, this “horrible” ϕ is not
even locally integrable.)

So how do we find the nicer wavelets in a vari-
ety, those with more derivatives? There are two pop-
ular approaches: (i) Following [Dau92], look for
vanishing moments. They can be found from fac-
torization of certain polynomials, the Daubechies
polynomials. Or: (ii) do factorization of the
polyphase matrix! For that, there is a handy oper-
ator R; it is a transfer operator (see (32) below). The
spectrum of R is pictured in Figure 5; the eigen-
values of R are functions of the two parameters that
refer to Figure 4. In the valleys of the mountain-
ous landscape of level-surfaces from Figure 5, i.e.,
the eigenvalues as they depend on two parameters,
is where we pick out the nicest of the functions in
the chaos of possibilities from the wavelets in Fig-
ure 4. The operator R is nowadays called the
wavelet-transfer operator, but it was studied first
by David Ruelle in the 1960s in connection with a
completely different problem (the phase transi-
tion question of quantum statistical mechanics
[Rue69]) and later in chaos theory [Rue02].

It is convenient for each k = 1,2, . . . , to look at
the family of all wavelet functions ϕ and ψ sup-
ported in the interval [0,2k+ 1] on the x-axis.
Within the family of all orthogonal wavelets sup-
ported in [0,2k+ 1], we look for vanishing mo-
ments of order j where 1 ≤ j ≤ k . We know how
to find subvarieties Sj ⊃ Sj+1 , where Sj consists of
the functions ψ in the family such that ψ has van-
ishing moments of order j . As j increases, Sj con-
tains wavelets of higher and higher orders of dif-
ferentiability. Testing for smoothness in each Sj can
be done with the so-called joint spectral radius
(JSR) test. It is a JSR computed for two noncom-
muting square matrices built in a simple way from
the system of masking coefficients a0, a1, a2, . . .,
a2k+1. But since the square matrices are noncom-
muting, the JSR is hard to compute. If k = 2, there

are six masking coefficients, and the two non-
commuting square matrices are

1√
2



a0 0 0 0 0
a2 a1 a0 0 0
a4 a3 a2 a1 a0

0 a5 a4 a3 a2

0 0 0 a5 a4




and

1√
2



a1 a0 0 0 0
a3 a2 a1 a0 0
a5 a4 a3 a2 a1

0 0 a5 a4 a3

0 0 0 0 a5


 .

An alternative test for smoothness involves the
Ruelle operator R. For k = 2, the interval is [0,5],
and for real-valued wavelets, the full variety is
given by the (θ,ρ) parameters. The eigenvalues of
Rθ,ρ may be ordered as follows:

1 ≥ |λ1 (θ,ρ)| ≥ |λ2 (θ,ρ)| ≥ · · · .
There is a simple known function s from R+ to R+
such that if |λ1 (θ,ρ)| < c , then the two functions
ϕθ,ρ and ψθ,ρ are in the Sobolev space H s(c). Re-
call that the Sobolev exponent s (c) is a measure of
differentiability. But algorithms for calculating the
best s are few and not especially efficient. Nonethe-
less, continuity and differentiability of the wavelet
functions are of critical importance in applications:
The a priori estimates which give the best wavelet
algorithm in JPEG 2000 are done in spaces of func-
tions of bounded variation, and they depend on the
smoothness of the wavelets that are used.

In Chapters 1–2 in [BrJo02] and in [Tre01], it is
pointed out that families of compactly supported
wavelets admit a group-theoretic formulation. When
this idea is specialized to the case of multiresolu-
tion wavelets which have both the scaling function
(father function ϕ ) and the wavelet generator
(mother function ψ ) itself supported in the fixed
interval from 0 to 5, then the full variety of pos-
sibilities may be described by two independently
varying unit vectors in C2 , in coordinates
v = (v1, v2) ∈ C2 , ‖v‖2 = |v1|2+ |v2|2 = 1. Unit
vectors in C2 define pure quantum-mechanical
states. The latter may be parameterized by points
on the (Bloch) sphere S2, i.e., points (x, y, z) ∈ R3,
x2 + y2 + z2 = 1. If σx , σy , and σz are the Pauli
spin matrices 

(
0 1
1 0

)
, 
(

0 −i
i 0

)
, and 

(
1 0
0 −1

)
in the three

coordinate directions, then (x, y, z) =(〈v | σxv〉 , 〈v | σyv
〉
, 〈v | σzv〉

)
is in S2 if and

only if ‖v‖ = 1. For example, v = (cosθ, sinθ) in C2

corresponds to the point (sin 2θ,0, cos 2θ) on S2.
Hence, viewing S2 as embedded in R3, the vector
moves on a great circle on S2 in the (x, z)-plane.
Thus in the example with two vectors of the form
(cosθ, sinθ), (cosρ, sinρ) with the parameters θ
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and ρ varying independently, displayed in [BrJo02,
(1.2.3)–(1.2.4)], the dependence of the masking co-
efficients ak (θ,ρ) on 2θ and 2ρ is as expected: the
wavelet parameter is not the vector v itself, but
rather the subspace generated by v, or the pro-
jection onto v, so we get the same wavelet mask-
ing coefficients for v and −v . The coefficients ak
are real-valued for a similar reason. The two func-
tions ϕ and ψ depend on variations in (θ,ρ) pe-
riodically, with period π in both parameters, so the
whole variety may be represented in a square
[0, π )× [0, π ). This is illustrated graphically in a
supplement to [BrJo02], http://www.math.
uiowa.edu/~jorgen/wavelet_motions.pdf. It
may be used as a flip-book of wavelets, displaying
a moving picture of their variation along the path
shown in the guide diagram in Figure 6. This flip-
book is thus a sort of stationary variant of Wim
Sweldens’s Wavelet Cascade (Java) Applet
http://cm.bell-labs.com/who/wim/
cascade/index.html. With the latter, the viewer
may explore changes of scaling and wavelet func-
tions with free movements of the computer mouse,
but the variation is limited to the “4-tap” wavelets,
i.e., those generated by a single rank-1 projection
(spin vector) and supported in the inverval [0,3],
while [BrJo02] and its flip-book supplement deal
with a bigger “6-tap” family, i.e., with support in
[0,5], and generated by two independent spin 
vectors.

While the functions ϕ and ψ are square-
integrable, they are continuous on [0,5] only for
(θ,ρ) in a periodic subset of R×R . (This subset is
often identified by vanishing moments or by spec-
tral conditions such as the JSR test; see [CGV99].)
If we ask whether ϕ and ψ , as points in a func-
tion space, show continuous dependence on (θ,ρ),
then that function-space continuity must be mea-
sured in mean square, i.e., in the metric defined by
the L2-norm of functions on [0,5]. In this metric,
continuity follows from [BrJo02, Theorem 2.5.8]; see
details below. Actually there are a finite number of
exceptions to the L2-continuous dependence on
(θ,ρ). They occur when the wavelet is one of the
degenerate Haar cases. These are the Haar wavelets
which define not strict orthonormal bases but only
tight frames. They have ϕ of the form ϕ = cχI ,
where I is a subinterval of [0,5] of length 3 or 5,
and where c = 1

3 in the first case, and c = 1
5 in the

second. Find them on Figure 4. If the reader follows
the moving wavelet pictures (on a printout, or on
the screen), we hope he/she will get some intuitive
ideas of fundamental wavelet relationships. The rig-
orous mathematics relating the various continuity
properties to cascade approximation, to moments,
and to spectral estimates is covered in much more
detail in the references below, especially [BrJo02]
and [CGV99].

Once the masking coefficients a0, a1, . . . , a5 are
specified as functions of the parameters θ and ρ,
the computation of cascade approximants of the
scaling function ϕ is done with a series of Mathe-
matica operations. The algorithm is designed to
start with a Haar function, and the limit of the it-
eration will then be a scaling function ϕ =ϕ(θ,ρ)

depending on the two rotation angles θ, ρ, and sat-
isfying

(26) ϕ(θ,ρ) (x) =
√

2
5∑
k=0

a(θ,ρ)
k ϕ(θ,ρ) (2x− k) .

The reptile features of the algorithm have the ef-
fect of producing fast cascading approximations to
the limit function ϕ(θ,ρ) . The algorithm of the so-
lution ϕ(θ,ρ) to the scaling identity (26) then pro-
ceeds as follows (see [Jor01], [Tre01], [BrJo02, §1.2]
for details). The relation (26) is interpreted as giv-
ing the values of the left-hand ϕ(θ,ρ) by an opera-
tion performed on those of the ϕ(θ,ρ) on the right.
A binary digit inversion transforms this into

f′k+1 (x) = Afk (x) ,

where A is the 2× 3 matrix

Ap,q =
√

2a(θ,ρ)
5+p−2q =

√
2

(
a(θ,ρ)

4 a(θ,ρ)
2 a(θ,ρ)

0

a(θ,ρ)
5 a(θ,ρ)

3 a(θ,ρ)
1

)

constructed from the coefficients in (26), and fj and
f′j are the vector functions

fj (x) =



ϕ(θ,ρ)

(
x− 2

2j

)
ϕ(θ,ρ)

(
x− 1

2j

)
ϕ(θ,ρ) (x)


 ,

f′j (x) =
(

ϕ(θ,ρ) (x)

ϕ(θ,ρ)
(
x+ 1

2j

)) .
Iterations of this operation give values of an ap-
proximation to ϕ(θ,ρ) on successively finer dyadic
grids in the x variable.

How To
For an implementation of this computation in Math-
ematica, we let loctwont stand for the transpose
of the coefficient matrix A ,4 and normalize the
Mathematica variables a0, a1, etc., to include the
factor of 

√
2 that appears in the cascade iteration:

4So named by contraction of “local two-by-ntranspose.”

http://www.math.uiowa.edu/~jorgen/wavelet_motions.pdf
http://www.math.uiowa.edu/~jorgen/wavelet_motions.pdf
http://cm.bell-labs.com/who/wim/cascade/index.html
http://cm.bell-labs.com/who/wim/cascade/index.html
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Each cascade step works with the list of values
from the previous step (phitable), pads it with ze-
roes on left and right, works it up into a matrix by
overlapping divisions (the Partition operation),
does a matrix multiplication with a matrix of mask-
ing coefficients (loctwont), and reduces (with
Flatten) the resulting matrix to a list again. At each
stage the implicit grid spacing is halved, and at the
specified final iteration the values of these grid
points are associated with the elements of the list
(using Table and Transpose), so that a plot of the
scaling-function approximant can be made with
other Mathematica operations such as ListPlot.

A direct implementation in Mathematica of the
computation of the wavelet ψ from the scaling
function ϕ by the formula [BrJo02, (2.5.25)] (with
the functions and coefficients depending on the ro-
tation angle parameters θ, ρ),

ψ(θ,ρ) (x) =
√

2
5∑
k=0

(−1)k a(θ,ρ)
5−k ϕ(θ,ρ) (2x− k) ,

is (again with 
√

2 subsumed in a0, a1, . . .)

But using the Table and Sum operations in this
way is inefficient for two reasons. First, the sum
has, after suitable rearrangement, the form of a se-
quence correlation that can be implemented with
a fast Fourier transform. And second, the way the
operations above are interpreted by Mathematica
is that the same scaling function (embedwavelet)
is computed repeatedly for each term of the sum
rather than being computed once and saved. Both
of these inefficiencies can be remedied by the use
of the ListCorrelate operation, which Mathe-
matica implements internally by Fourier-transform
methods.

The necessary rearrangement amounts to group-
ing the list of values into a matrix and transpos-
ing the matrix. This is done, at both ends of the

computation, with the Partition and Transpose
operations, followed by Flatten to return to an un-
grouped list. Note also the use of PadLeft and
PadRight to add zeroes to keep the different rows
of the matrix from getting mixed in the ListCor-
relate operation; these could have been used in
the direct implementation as well, where zero-
padding was needed at the ends of the sum. The
Fourier-transform method used in Mathematica’s
implementation of the ListCorrelate operation
gives results numerically identical to those ob-
tained by the direct calculation with the Table and
Sum operations, thanks in part to Mathematica’s
implementation of ListCorrelate that uses a real
transform method on real data. For the wavelet
functions computed for the flip-book, the method
using ListCorrelateworks about 500 times faster
than the method using Table and Sum.

We present a guide diagram in Figure 6 corre-
sponding to the (θ,ρ) plane of Figures 4 and 5, with
dots for the point (and its periodic replicas) whose
wavelet function and scaling function are displayed
on the current page and line. The square outlined
in black is the fundamental region [0, π )× [0, π ),
shown with labels in Figure 6. There is a path, part
of which represents a vanishing-moment curve
where the wavelet function ψ(x) satisfies the mo-
ment condition 

∫
xψ(x)dx = 0, and the masking co-

efficients a0, . . . , a5 satisfy the equivalent divisibility
condition m0(z) = 2−

1
2
∑5
k=0 akzk = (z + 1)2 p(z)

for some polynomial p. The viewer familiar with
[Jor01] may find amusement in watching for the ap-
pearance in the sequence of the familiar Daubechies
wavelets, as well as the single point in the sequence
where the additional moment and divisibility con-
ditions 

∫
x2ψ(x)dx = 0 and m0(z) = (z + 1)3 q(z)

are met. In Figure 4 you see variations of these
wavelets, as the parameters move around and cover
a period-square.

The part of the spectrum of the Ruelle operator
R in (32) which determines the shape of each wavelet
is a finite set of points. As each point in this part
of the spectrum is a function of the two parame-
ters, the eigenvalues may be ordered and presented
in the sketch as functions of two variables. The
graphs represent surfaces starting with a top eigen-
value (a Perron-Frobenius eigenvalue equal to 1 for
all values of the parameters). One of the surfaces,
two steps down from the top, is pictured in Figure
5. There is a constant eigenvalue 1/2 that gives the
appearance of mountains rising from lakes or
Christopher Columbus’s hat or a body in bathwa-
ter, if you prefer! And then the top eigenvalue equal
to 1 is the ceiling. Other eigenvalue surfaces in this
series are shown in figures within the book [BrJo02],
and one surface with branch cuts, used as a sort of
frontispiece, looks like “Half Dome” in Yosemite Val-
ley. This closed-form eigenvalue, when compared
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to the eigenvalue surfaces sorted by absolute value,
coincides with the second eigenvalue from the top
in part of the parameter range and with smaller
eigenvalues in other parts of the range. The para-
meters representing the lower parts of the sur-
faces are important: for example, they give algo-
rithms that are faster. And wavelets that are more
regular tend to be located in the region of the
period-square which have a concentration of low-
lying spectrum. Hence the flat portions of the
“bathwater” surface signify an abundance of “good”
wavelets.
Haar Meets Cantor
The scaling identity (13) depends on a choice of
masking coefficients {ak}k∈Zd. This suggests a strat-
egy for finding the scaling function (also called
the father function) ϕ as a solution to an opera-
tor identity: the idea is to try to get ϕ as the limit
of an iteration of the following operator:

(27) S : f � �→
√
N
∑
k∈Zd

akf (Ax− k) ;

i.e., ϕ = limn→∞ Snf with a suitable choice of start-
ing point f for the iteration. As suggested by (13),
an integration shows that a necessary condition for
this to work is that

(28)
∑
k∈Zd

ak =
√
N.

This normalization is indeed satisfied for the two
examples (10) and (15). In the first one (10), d = 1,
A = N = 2, and the solution ϕ is the box-function
ϕ of Haar which is certainly in L2 (R) . In the sec-
ond example (15) of Cantor, d = 1, A = N = 3, and
the solution ϕ is now the Cantor measure. This
measure, while a solution, is a singular measure,
and, in fact, it is not even represented locally by
an integrable function.

To understand the dichotomy between the case
of Haar and that of Cantor, introduce the generat-
ing function m0 for the masking coefficients in
(13), i.e., m0 (z) =∑k∈Zd akzk . For simplicity, spe-
cialize to d = 1. It will be convenient for us to con-
sider m0 as a function on T by restriction, viewing
the torus T = R/Z as a circle in C ,  i .e. ,  as
T = {z ∈ C : |z| = 1} . Then the normalization con-
dition (28) reads

(29) m0 (1) =
√
N.

The other conditions (22)–(23) on the masking co-
efficients, i.e.,

(30)
∑
k∈Z
ākak−lN = δ0,l , l ∈ Z,

then take the functional form

(31)
1
N

∑
w∈T
wN=z

|m0 (w )|2 = 1.

But this is an orthogonality condition, stated in ei-
ther one of its two equivalent forms, and it is nec-
essary for ensuring orthogonality in the ultimate
construction of a wavelet basis for L2 (R) . In Haar’s
example, N = 2 and m0 (z) = 1+z√

2 . Setting z = e−iξ ,
one finds that (31) is equivalent to the familiar
trigonometric identity cos2 ξ + sin2 ξ = 1. But, for
Cantor’s example, N = 3 and m0 (z) =

√
3

2

(
1+ z2

)
,

and now 13
∑
w3=z |m0 (w )|2 = 3/2.

Stated differently, if an operator R is defined as
acting on functions h on T by

(32) (Rh) (z) = 1
N

∑
w∈T
wN=z

|m0 (w )|2 h (w ) ,

then the formula (31) takes the form R1 = 1 , where
1 denotes the function on T which is constant and
equal to 1. In the analysis of
[Dau92] and [BrJo02], the op-
erator R from (32) is called the
wavelet transfer operator, or
the Ruelle operator, and 1 is
called the Perron–Frobenius
eigenfunction. Hence the sig-
nificant distinction between the
case of Haar and that of Cantor
is the numerical size of the Per-
ron–Frobenius eigenvalue: It is
1 in the first case and 3/2 in the
second. The operator R in (32)
is called the wavelet transfer
operator because of the analogy
to the probabilistic view of the
Perron–Frobenius matrix setting
and because of the probability content of condition
(31): Looking at the right-hand side in (32), for
each point z ∈ T there are N distinct solutions w
to wN = z, and each of the corresponding numbers

0.4

0.6

0.8

1

θ=π

ρ=π
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Figure 5. Eigenvalue of two-parameter family of Ruelle
operators.
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Figure 6. Guide diagram.
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1
N |m0 (w )|2 signifies conditional probabilities for
transfer from some w to z , where w is one of the
N possibilities. This random-walk model helps us
understand and compute the spectral theory of R,
as pointed out in [BrJo02].

The Ruelle transfer operator R “counts” the ac-
cumulated contribution to the cascade approxi-
mation, i.e., to the scaling function ϕ, when the limit
exists. But unless the Perron–Frobenius eigenvalue
λPF = 1, the limit “escapes” out from L2 (R) . In the
middle-third-Cantor case, λPF = 3/2, which ac-
counts for ϕ in this case being a singular measure,
not represented by a locally integrable function on
R . The Hausdorff dimension d in Cantor’s case
can be shown to be d = log 2

log 3 .

Perron-Frobenius and Stability of Wavelets
If the wavelet transfer operator R in (32) is con-
sidered in the context of Lipschitz functions on T,
Lip (T) , then it has spectral properties which closely
mirror those which are familiar classically from
Perron and Frobenius for finite positive matrices.
Let R = (ri,j)ni,j=1 , ri,j ≥ 0. A classical theorem
[Per07] states that each such matrix R has a posi-
tive eigenvalue λPF which agrees with the spectral
radius of R. Specializing to λPF = 1, Perron and
Frobenius showed that there are positive vectors ν
and v, ν a row-vector and v a column-vector, such
that νR = ν, Rv = v, and ν·v = 1. The same turns
out to hold for R in (32); only now ν is the Dirac
measure at z = 1, called δ1, and v is the constant
function 1 on the torus T. Imitating what is known
for finite matrices, we get a reduced form of the Ru-
elle operator R acting on the subspace
Lip<1 := {h ∈ Lip (T) : δ1 (h) = 0} . We say that R
has Perron-Frobenius spectrum if the spectral radius
of R, restricted to Lip<1, is strictly less than 1.

Introducing the Lipschitz norm∥∥∥p (eiξ)∥∥∥
Lip(T)

= |p (1)| + sup
−π<ξ<η≤π

∣∣p (eiξ)− p (eiη)∣∣∣∣ξ − η∣∣ ,

we have:

Theorem. [BrJo02, Theorem 2.5.8] Let m and m′

be in Lip (T) and suppose they both satisfy (29) and
(31). Suppose further that each of the transfer op-
erators Rm and Rm′ has Perron–Frobenius spec-
trum. Let λred (m) (< 1 ) be the reduced spectral ra-
dius of Rm. Then there is a constant C independent
of m and m′ such that the associated scaling func-
tions (father functions) ϕm and ϕm′ satisfy the fol-
lowing Lipschitz estimate:

‖ϕm −ϕm′‖L2(R) ≤ C
1√

1− λred (m)
‖m−m′‖Lip(T) .

On the other hand, the space Lip is not large
enough as repository of the filter functions in the
study of limits of wavelets. The wavelet ψS on R
with ψ̂S = χ(−π,− π2 ]∪( π2 ,π] (i.e., frequency localized), 

named after Shannon, has the low-pass and high-
pass filter functions 1√

2m0
(
e−iξ

) = χ[− π2 , π2 )
(
ξ
)

and

1√
2m1

(
e−iξ

) = χ[ π
2 ,

3π
2

) (ξ), and they are clearly not 

in Lip (T) . Nonetheless, there is a “law of large num-
bers for wavelets”: Let some “nice” (compactly sup-
ported) wavelet ψ be given. Two general theorems
of Aldroubi et al. establish the following “limit
laws”:
1. (ψ∗ · · · ∗ψ︸ ︷︷ ︸

n times

) �→
n→∞

ψS in L2 (R) with 

renormalization, and

2. Let ψDn denote the Daubechies wavelets given 
by the Daubechies polynomials Pn [Dau92]. Then

it was shown in [AbAl95] that ψDn
L2(R)
���������������������������������������������������������������������������→
n→∞

ψS .

Conclusions
Wavelet analysis and wavelet applications offer a
rich variety of interdisciplinary adventures. What
is especially striking is the fact that crucial math-
ematical steps seem to get unexpectedly discovered
in diverse communities of engineers, scientists, or
mathematicians. If each of the groups of practi-
tioners would make more of an effort to learn
about the other, much would be gained. In wavelet
theory, it has been exciting to observe the ex-
changes of ideas in signal-processing engineering.
The mathematical developments there might have
had a different aim, but nonetheless they have of-
fered key ideas to mathematics, which have given
new life to the subject of wavelets and, more gen-
erally, to harmonic analysis and approximation
theory.

Terminology and Dictionary
• multiresolution—real world: a set of band-pass-

filtered component images, assembled into a
mosaic of resolution bands, each resolution tied
to a finer one and a coarser one.
—mathematics: used in wavelet analysis and
fractal analysis, multiresolutions are systems
of closed subspaces in a Hilbert space, such as
L2 (R) , with the subspaces nested, each sub-
space representing a resolution, and the relative
complement subspaces representing the detail
which is added in getting to the next finer res-
olution subspace.

• matrix function: a function from the circle, or
the one-torus, taking values in a group of
N-by-N complex matrices.

• subband filter:—engineering: signals are viewed
as functions of time and frequency, the fre-
quency function resulting from a transform of
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the time function; the frequency variable is bro-
ken up into bands, and up-sampling and down-
sampling are combined with a filtering of the
frequencies in making the connection from one
band to the next.
—wavelets: scaling is used in passing from one
resolution V to the next; if a scale N is used
from V to the next finer resolution, then scaling
by 1

N takes V to a coarser resolution V1, repre-
sented by a subspace of V , but there is a set of
functions that serve as multipliers when relat-
ing V to V1, and they are called subband filters.

• cascades:—real world: a system of successive re-
finements which pass from a scale to a finer one,
and so on; used, for example, in graphics algo-
rithms: starting with control points, a refinement
matrix and masking coefficients are used in a
cascade algorithm, yielding a cascade of mask-
ing points and a cascade approximation to a
picture.
—wavelets: in one dimension the scaling is 
by a number and a fixed simple function, for 

example, of the form 
0 1

, is chosen as the 

initial step for the cascades. When the masking
coefficients are chosen, the cascade approxi-
mation leads to a scaling function.

• scaling function: a function or a distribution
ϕ, defined on the real line R , which has the
property that for some integer N > 1, the coarser

version ϕ
(
x
N

)
is in the closure (relative to some 

metric) of the linear span of the set of translated
functions . . . ,ϕ (x+ 1) , ϕ (x) , ϕ (x− 1) ,
ϕ (x− 2) , . . . .

• orthogonality in the strict sense: for ψ ∈ L2 (R)
to be a dyadic wavelet, the double-indexed fam-
ily of functions ψj,k (x) := 2j/2ψ

(
2jx− k) ,

j, k ∈ Z, must be a basis for L2 (R) ; i.e., every
f ∈ L2 (R) must admit a unique representation

(33) f (x) =
∑
j,k∈Z

cj,kψj,k (x) .

If the system 
{
ψj,k : j, k ∈ Z} is further assumed

orthonormal, i.e., if

(34)
〈
ψj,k | ψj′,k′

〉 = δj,j′δk,k′ ,
then clearly

(35) ‖f‖2
2 =

∑
j,k∈Z

∣∣cj,k∣∣2 , f ∈ L2 (R) .

But (33) and (35) may hold even if the ortho-
normal property (34) fails. For example, 
suppose ψ is a multiresolution wavelet in 
the strict sense, with 

{
ψj,k

}
satisfying (33) and

(34); then set ψ̃ (x) := 1
3ψ (x/3), and ψ̃j,k (x) :=

2j/2ψ̃
(
2jx− k) . We will still have

(36) ‖f‖2
2 =

∑
j,k∈Z

|〈ψ̃j,k | f 〉|2 , f ∈ L2 (R) ,

but now {ψ̃j,k} will not satisfy (34), and in fact
‖ψ̃‖2 = 1/

√
3. A system satisfying condition (36)

is called a tight frame. Varying the parameters
within a family of wavelets of fixed support and
each satisfying the orthonormality condition,
we find points of degeneracy. They correspond
to wavelet bases which are only tight frames in
L2 (R) , and these special wavelet generators are
found precisely at points (in the parameter
variety) where the eigenspace of the Perron-
Frobenius eigenvalue is of dimension more than
one. It is known that the degeneracy can be com-
plicated in general, but within the varieties given
by the polyphase matrices, or the spin-vector
configurations, the degeneracy is known to hap-
pen on subvarieties of lower dimension. The di-
rect correspondence between polyphase matrix
and wavelet is further known to break down on
the subvariety where the orthonormality de-
generates into the tight frame property.
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About the Cover

Cloud Nine
This month’s cover expands upon the “cloud

nine” image in Palle Jorgensen’s article. It rep-
resents the fractal tile (which Jorgensen calls a
‘reptile’) constructed by an iteration process,
starting with a fundamental domain of the tiling.
The central figure shows the results of several
iterations applied to a single fundamental do-
main, together with several neighboring tiles.
Along the left side are the results of the first few
steps of the iteration, showing successive ap-
proximations to the final tile.

Jorgensen writes, “A reptile T arises from a
limit construction, a simple algorithm which re-
peats the same set of affine operations in each
step. They are defined from a matrix A , and a
finite set of vectors D, i.e., T = T (A,D) where D
is a set of representatives of Z2/AZ2. Many in-
teresting questions present themselves. For ex-
ample, under what circumstances does T tile the
plane? And if it does, can it be made to tile with
lattice translations? How do you find an admis-
sible lattice L? The simpler planar reptiles T
make a tiling by vectors in Z2, and have area 1.
They serve as higher-dimensional versions of
the familiar Haar construction from one dimen-
sion. The picture on the cover has area 2, and
the corresponding lattice L which makes a pla-
nar tiling is generated by the vectors (1,0) and
(0,2).”

—Bill Casselman, Covers Editor
(notices-covers@ams.org)
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