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The Problem
● Election result must
be put on the net.

● Election database
must be protected.

● Conflict resolved by:

– Sneakernet or

– Even odder
solutions

Miami Dade County Solution
Security through obscurity



What we need

A data diode

● Allow data export

● Prevent data import

● Design understood by

– Election observers

– Election officials

– Losing candidates



US Patent 5,703,562

● Claims limited to up-hierarchy transmission
● Example given for RS-232 implementation

– Transmit: 1 IC + 8 components + 5 volt supply

– Receive: 1 IC + 4 components + 5 volt supply

● Explain this to a naïve suspicious observer!



Commercial Data Diodes

● Both based on fiber-optic technology

● Tenix Data Diode certified to EAL 7 under Common Criteria

www.owlcti.com

www.tenix.com



Design Transparency
● EAL 7 certification

– Insufficient if the certifying agency is not trusted

– What if the vendor cheats after certification?

● Therefore, we need

– Complete design transparency

– Open documentation

– Rights of observers to inspect entire mechanism

– Minimal complexity



Our Design

● Avoid all black boxes

– no 3-terminal devices

– No ICs

● Extreme simplicity

– Use RS-232



Explaining the circuit board

● Must explain function of

– Every circuit trace

– Every component



Explaining the Transmitter
● GND: signal ground

● TxD: transmit data

● When TxD is positive

– Top LED lights

● When TxD is negative

– Bottom LED lights

● Resistor needed as

– Current limiter



Explaining the Transmitter
● The shield pin in the cable

– Connects to metallic sheath

● The shield pin on the board

– Connects to trace that
surrounds the electronics

● Together

– These make it difficult to use
conductors inside the shield
as radio antennas



Explaining the Transmitter
● The loopback connections

– Tell computer we're ready

● RTS to CTS

– Request To Send (input)

– Clear To Send (output)

● DTR to DSR and DCD

– Data Terminal Ready (input)

– Data Set Ready (output)

– Data Carrier Detect (output)



Explaining the Receiver

● The power supply

– Uses RTS TxD and DTR

● Power from Serial cable

● Power from special cable

– 2 batteries

– AC power from wall outlet

● Capacitors and Diodes

– Permit 60Hz operation



Explaining the Receiver
● The Receiver itself

– Uses the power supply

– Transmits to RxD output

● Top photodiode

– Pulls RxD positive

● Bottom photodiode

– Pulls RxD negative

● Resistors needed as

– Current limiters



Using the Data Diode
● No reverse channel (almost)

– Must rely entirely on forward error correction

– Checksums (or better) to reject bad data

– Redundancy to provide for correction

– Operational status determined from downstream

● Sending from high to low security domain

– Covert content in data is a big issue

– Unlike most low to high transmission



Auditors and Wiretaps
● Data exported from EMS is public

● Observers should not trust the web server

● So, observers should be allowed wiretaps

– Directly observe data-flow to server

– Directly verify that data conforms to spec

● Free air (as opposed to fiber optic) optical
data diodes offer excellent access to the data
stream by observers!



Exporting Election Results

Using relational database terminology
election results are a single relation over:

● Precinct (or split, for split precincts)
● Race (or contest)
● Candidate (or position with respect to contest)
● Votes for that candidate in that race in that precinct

What we need to do is export this entire relation



OASIS EML, A Bad Idea
● Requires header

– Data diode invites an
infinite stream

● Verbose

– human audit difficult

● Covert channels

– Complex rules for
canonical form

● Difficult to checksum

#-- EML-20081104-US-CA-Santa_Clara_County-2216-1274.xml --#
<?xml version="1.0" encoding="UTF-8"?>
<CastVote xmlns="440-castvote.xsd">
<ElectionEvent>
<Event>
<EventName Id="n1274s213">
Santa Clara County, CA, USA (2008-11-04)

</EventName>
<EventQualifier>Precint 2216</EventQualifier>

</Event>
<Election>
<ElectionName>Presidency</ElectionName>
<Contest>
<ContestName>President</ContestName>
<Selection>
<Option>
<OptionName>V. I. Lenin</OptionName>

</Option>
</Selection>

</Contest>
</Election>
<Election>
<ElectionName>Presidency</ElectionName>
<Contest>
<ContestName>Vice-President</ContestName>
<Selection>
<Option>
<OptionName>Karl Marx</OptionName>

</Option>
</Selection>

</Contest>
</Election>
<Election>
<ElectionName>Senate</ElectionName>
<Contest>
<ContestName>Senator</ContestName>
<Selection>
<Option>
<OptionName>William Lloyd Garrison</OptionName>

</Option>



Reasonable Data Formats
● A repeating stream of checksummed records

● Tab separated fields?
IC15 President Lincoln 25 16384
CV06 Mayor Thomas 42 32768

● XMLish but not really XML
<ITEM PRECINCT=”IC15” RACE=”President”
CANDIDATE=”Lincoln” VOTES=”25” />53895
<ITEM PRECINCT=”CV06” RACE=”mayor”
CANDIDATE=”Thomas” VOTES=”42” />41274

● We opt (on weak grounds) for XMLish



Covert Channels
● The Risk

– Covert export of security keys from EMS

● The Defense

– Rigid format constraints on data
● No optional, permutable, or alternate elements
● No free use of whitespace or line ends

– Code audit on real-time checks in transmit code
● No non-constant time delays allowed in transmitter



Transparent Checksums
● We have a transparent data diode design

● We have a transparent data format

● We need a transparent checksum algorithm

– Understandable using highschool math

– Easy to code in a bad programming language

● CRC-16 is not transparent!

– Try explaining this: X16 + X15 + X2 + 1

– Or this:



Transparent Checksums
● A classic transparent but weak checksum

– S0 = 0; Si+1 = (Si + Ci) mod 256

● Amodest proposal

– S0 = 0; Si+1 = (5Si + Ci) mod 65536

– Akin to multiplicitative congruence PRNG

● What multipliers and moduli are best

● Is there a cryptographically secure hash code
that meets our transparency goals?



Code to checksum data stream
#include <stdio.h>
/* filter to checksum each block of angle-bracketed text

Reads from stdin and copies to stdout.
Appends decimal checksum to each closing angle bracket.
Angle brackets are included in the checksum.
NOTE: This code is dumb, bracket nesting is ignored and
bracked imbalance is not checked. */

main ()
{

int ch;
unsigned int sum = 0;
while ((ch = getchar()) != EOF) {

putchar( ch );
sum = (sum * 5 + ch) % 66636; /*accumulate*/
if (ch == '<') {

sum = '<'; /*initialize*/
} else if (ch == '>') {

printf("%1u",sum);
} } }

Even this is hard to explain, but it's in reach of a student who
only has a semester of programming, perhaps in VB or worse
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A Prototype Application
● Scaffolding

– Extract results from example county data

– Inject in model EMS database

● Demo code

– Cyclically scan EMS database

– Export through data diode

● Decent quality prototype application code

– Receive data from data diode to mirror database

– Server-side web application for results



Other Applications
● Upstream

● In voting machine


