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Introduction
Hat problems have captivated mathematicians for the better part of the last decade, as solutions to the problem have created profound theories and results for coding and the computer sciences. The problem goes like this; k distinguishable hats are placed on top of n players. Every player can see everyone else’s hat color but his, and he has to guess the color of his hat based on what color he observes from other people. This paper tries to determine strategies that will help maximize the number of collective correct guesses from a group of people, first by examining the simple case where there are 2-colored hats and 2 different people, then by expanding the concept through sight graphs, where a person has limited sight, and finally by applying hypercube methods to the problem in order to find the nature of such optimal strategies. 

Hat problems have always been used for coding theory such as Hamming codes, but other uses that come from derivations of its solutions can also be found in the design of deterministic auction mechanisms. Aggarwal et al.  have used hat problems in the design of deterministic auction mechanisms (619-625). When constructing truthful auction mechanisms, a mechanism designer must devise a procedure for assigning a price to each bidder based only on the bids of other players (or else she may have an incentive to lie about her bid), with the goal of charging many bidders a price which is close to their own bidders. This procedure is very similar to the hat problem in which the goal is to devise a procedure for assigning a guess to each player based only on the hat colors of other players, with the goal of assigning to many players a guess which matches their own hat colors. By exploiting this similarity between the two problems, Aggarwal et al. used hat guessing strategies for a variant of the balanced hat problem to provide a generic procedure for converting a randomized auction into a deterministic auction with approximately the same revenue, in markets with single-parameter bidders and no supply constraints.
Finally, the author mentions that it is important to note that their papers focus on deterministic strategies instead of randomized ones as the deterministic strategies focus on the worst case scenario instead of average or even almost all scenarios. However, it should also be mentioned here that every participant in the game will be required to answer their hat colors simultaneously, unless the order of the answer will give away the answer of at least one person. For example, if there are n people with k number of possible color hats, and assuming that the participants will be answering in the order from 1 to n, where the second person will know the answer of the first before he answers himself, all they need to do to ensure at least one person gets a right answer is to observe the n person’s color, and have everyone from 1 to n-1 answer all possible colors but the color the n person is wearing, and have the k person answer the color that has not been mention yet by the people who answered before him. Although this method will not work if k > n, this example is just a demonstration that the game will be played differently if the players answered either simultaneously together, or if they answered based on a certain order. This assumption is not mentioned in the paper.

A winning approach to the hat guessing game

Consider this scenario where there are two people with two different choices for hats. Either both people will be wearing the same colored hat or both will be wearing a different color hat. Hence in order to leverage on this distinction, the strategy of having the first person guess the color of what the other is wearing, and having the second person guess the opposite of what the first person is wearing, will guarantee at least one correct answers from either person.

	1st Actual Hat
	2nd Actual Hat
	1st Guess
	2nd Guess

	B
	R
	R
	R

	R
	B
	B
	B

	B
	B
	B
	R

	R
	R
	R
	B


The paper follows up with a theorem that states if there are n players and hats of k different colors, then there exist a strategy that guarantees at least n/k correct guesses. No strategy can improve on this, The proof explains that if we numbered players 1 to n and color of hats from 1 to k, the ith player would just have to guess as if the sum of all hats is congruent to i mod k to guarantee at least n/k of the players will be guessing correctly.  The reason that this strategy cannot be improved on is proved through an averaging argument where if a player sees a particular placement of hats, then the player is in one of k situations and will only guess correctly in one of those situations. Since there are k ^ (n-1) ways to place hats on the remaining players, we can see that each player will make k ^ (n-1) correct guesses over all possible placement of hats, then on average we have (n * (K ^ n-1))/ (K^ n) correct guesses, which is equivalent to n/k.

An acyclic directed graph is a directed graph with no directed cycles as shown below
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Below is an example where we implement the strategy as depicted in the proof with 3 people and 3 different colored hats. The theory states that there will be at least 1 (3/3) correct answer collectively regardless of the arrangement of hats, and the results from the example supports the theory.

	A
	B
	C
	 
	Guess A
	Guess B
	Guess C

	1
	1
	1
	
	2
	3
	1

	1
	1
	2
	
	1
	2
	1

	1
	1
	3
	
	3
	1
	1

	1
	2
	1
	
	1
	3
	3
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	2
	2
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	2
	3

	1
	2
	3
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	1
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	1
	3
	1
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	3
	2
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	2
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	2
	2
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	3
	3
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	1
	2
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	1
	1
	
	2
	2
	3

	2
	1
	2
	
	1
	1
	3
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	1
	3
	
	3
	3
	3
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	2
	1
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	2
	2
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	2
	2
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	1
	2

	2
	2
	3
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	2
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	3
	1
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	3
	2
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	1
	1
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	3
	3
	
	1
	3
	1
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	1
	1
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	2
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	3
	2
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	3
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	2
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	2
	1
	
	1
	1
	1
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	2
	2
	
	3
	3
	1

	3
	2
	3
	
	2
	2
	1

	3
	3
	1
	
	3
	1
	3

	3
	3
	2
	
	2
	3
	3

	3
	3
	3
	 
	1
	2
	3


Restricting vision in the game

Another aspect of the game would be to apply sight graphs to the problem, where people are represented by vertices and the person’s vision and whom he can see is represented by the edges. The first case considered by the paper is the undirected case, where if A can see B, B can see A as well. If we assume that there will only be 2 color of hats in this situation, then the optimal strategy would just be pairing people up whom can see each other and implement the same strategy we employed when there were only 2 people with 2 hats.  Hence we can guarantee at least M correct answers where M is the maximum number of matches. In order to proof that the maximum number of correct answers, which we will denote from now on as H(G), is also M, we need to prove that H(G) ≤ M. The authors use the Tutte-Berge formula which says that there is a subset U of vertices such that 
|M| = (|V | + |U| − o(G − U))/2

O(G-U) is the number of connected components of the induced sub-graph G-U which have an odd number of vertices. For j = O(G-U), let W(1)… W(j) be the connected components of G-U which have an odd number of vertices, and let Y be the union of all the connected components of G – U that will have an even number of vertices. For any strategy, we will place a hat on U arbitrarily, and everyone else’s guess will be now dependant on the color of U. Applying the theorem that there can be only a maximum of n/k correct answers, there can be a placement of hats on each W(i) with at most (W(i) -1)/2 correct guesses. Similarly, we can also place hats on Y such that there can be at most Y/2 correct answers, hence the total number of correct guesses is bounded above by 

|U| + (|Y | + |W1| − 1 + · · · + |Wj| − 1)/2 = (|V | + |U| − j)/2 = |M|. 

The Directed Case

The paper states that there is no exact bound for H(G) if G is a directed sight di-graph, where A who has sight of B would not imply that B has sight of A, but there are simple upper and lower bounds of H(G). The paper denotes C(G) as the maximal number of vertex disjoint cycles in G, and let F(G) denote the minimum number of vertices whose removal from G would make the graph acyclic. With that, C(G) ≤ H(G) ≤ F(G). The lower bound is proven by noting that we can guarantee at least one correct answer from every cycle by applying the same strategy for the two person two color hat scenario. If the cycle contains k people, we can just have everyone from 1 to (k-1) guess the opposite of k’s hat, and have the k person guess the 1st person’s hat in order to guarantee one correct answer.  For the upper bound, we can arrange the vertices in order so that the removal of certain vertices will leave the graph acyclic and the remaining vertices will be such that if I > F(g) and there is an edge from V(i) to V(j), then j < I. We can place hats on the first F(G) people arbitrarily and then place hats on players F(G) + 1 to n in turn, choosing each of the last n – F(G) hat colors as to force the corresponding player to guess incorrectly given the previous colors. 

These bounds are not sharp bounds. For example, an undirected triangle with 2 different possible hat colors has H(G) of 1, but a F(G) of 2. As for the lower bound, the example below shows that the lower bound is not sharp either and also demonstrates the use of Hamming weights in implementing a hat problem strategy.

Hamming Weights

Hamming weights are a concept developed by Richard Hamming whose research had a profound impact on cryptology and mathematical coding during World War 2. The Hamming weight of a string is essentially the number of symbols that are different from the zero symbol of the alphabet used as displayed in the examples below.

	Alphabet
	String
	Hamming weight

	0,1
	11101
	4

	0,1
	11101000
	4

	0,1
	0
	0

	' ',a-z
	hello world
	10


Hamming Weight Example

Consider the graph below with 2 possible hat colors of 1 or 2. 
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     (Fig, 1 Butler, Hajiaghayi, et al, p595)

The strategy is as follows with G(a) being a’s guess and so on with mod 2 arithmetic, and the values A,B,C,D,E be 1 or 2 as noted by their hat color.
G(a) = B + E 
G(b) = C + E 
G(c) = D + E 
G(d) = A + E + 1

G(e) = 1 if(A + B,B + C,C + D,A + D + 1) has Hamming weight 
            0 if(A + B,B + C,C + D,A + D + 1) has Hamming weight 3
With this strategy, player’s a, b, c and d will either make 3 correct guesses or 1 correct guess depending on what e wears. Hence, player e will just have to guess as though his hat would force at least one correct guess from amongst the 4 players. If player e guesses incorrectly, there will be at 3 right guesses, but if player e guesses correctly, there will be a total of 2 right guesses including his own hat. In this example, You can form at most 1 directed cycle, but the minimum number of correct guesses is 2, showing that the lower bound is not sharp either.

Below are the calculations to verify the strategy’s results.

	a
	b
	c
	d
	e
	 
	G(a)
	G(b)
	G(c)
	G(d)
	G(e)

	0
	0
	0
	0
	0
	 
	0
	0
	0
	1
	1

	0
	0
	0
	0
	1
	 
	1
	1
	1
	0
	1

	0
	0
	0
	1
	0
	 
	0
	0
	1
	1
	1

	0
	0
	0
	1
	1
	 
	1
	1
	0
	0
	1

	0
	0
	1
	0
	0
	 
	0
	1
	0
	1
	0

	0
	0
	1
	0
	1
	 
	1
	0
	1
	0
	0

	0
	0
	1
	1
	0
	 
	0
	1
	1
	1
	1

	0
	0
	1
	1
	1
	 
	1
	0
	0
	0
	1

	0
	1
	0
	0
	0
	 
	1
	0
	0
	1
	0

	0
	1
	0
	0
	1
	 
	0
	1
	1
	0
	0

	0
	1
	0
	1
	0
	 
	1
	0
	1
	1
	0

	0
	1
	0
	1
	1
	 
	0
	1
	0
	0
	0

	0
	1
	1
	0
	0
	 
	1
	1
	0
	1
	0

	0
	1
	1
	0
	1
	 
	0
	0
	1
	0
	0

	0
	1
	1
	1
	0
	 
	1
	1
	1
	1
	1

	0
	1
	1
	1
	1
	 
	0
	0
	0
	0
	1

	1
	0
	0
	0
	0
	 
	0
	0
	0
	0
	1

	1
	0
	0
	0
	1
	 
	1
	1
	1
	1
	1

	1
	0
	0
	1
	0
	 
	0
	0
	1
	0
	0

	1
	0
	0
	1
	1
	 
	1
	1
	0
	1
	0

	1
	0
	1
	0
	0
	 
	0
	1
	0
	0
	0

	1
	0
	1
	0
	1
	 
	1
	0
	1
	1
	0

	1
	0
	1
	1
	0
	 
	0
	1
	1
	0
	0

	1
	0
	1
	1
	1
	 
	1
	0
	0
	1
	0

	1
	1
	0
	0
	0
	 
	1
	0
	0
	0
	1

	1
	1
	0
	0
	1
	 
	0
	1
	1
	1
	1

	1
	1
	0
	1
	0
	 
	1
	0
	1
	0
	0

	1
	1
	0
	1
	1
	 
	0
	1
	0
	1
	0

	1
	1
	1
	0
	0
	 
	1
	1
	0
	0
	1

	1
	1
	1
	0
	1
	 
	0
	0
	1
	1
	1

	1
	1
	1
	1
	0
	 
	1
	1
	1
	0
	1

	1
	1
	1
	1
	1
	 
	0
	0
	0
	1
	1


Guessing with More than 2 Hat Colors

Given a graph G, we already know that H(G) is 1 as long as we are able to form an undirected k-clique as proved by the theorem mentioned above. However, it is possible to prove the same claim without resorting to forming k-cliques. The author claims that for every number k of possible hat colors, there exists a bipartite graph G with H(G) > 0. The proof begins by forming a bipartite graph with k-1 vertices on the left side and k^k^(k-1) vertices on the right. Let C denote the set of all possible k-color arrangements within the left side of the graph, which is essentially k^(k-1). Every C is then picked to have a one-to-one correspondence to {1,2…k} on the left side and let each vertex on the right side of G guess its color given the corresponding mapping. Let C(R) denote a fixed coloring of the right side of G and let C’ denote the set of all colorings of the left side of G such that the combined coloring causes every vertex on the right side to guess its own color incorrectly. Given the coloring on the right side, the set C’ as defined above will have at most k-1 elements. So let c1, c2, …., cn be the list of possible color arrangements which contains every element within C’. For every I that goes from 1 to n, vertex I on the left guesses that its color is ci(i). This strategy will then guarantee at least one answer as at least one vertex on the right side will always choose correctly unless the coloring on the left side belongs to C’, but that would imply the vertex on the left side would have guessed its own color correctly. Hence for every k number of possible colored hats, there will exist a bipartite graph that has H(G) > 0. 
Generalized Guessing Graphs

In this section, we will discuss strategies that will maximize our collective correct guesses when the players are not necessarily trying to guess their own hat colors or have full vision of everyone else’s hat. Instead there is a set of players (P), a set of hats (H), since a person whose hat color no one can see could might as well not have a hat, a directed visibility graph (G(v)) and a guessing directed graph (G(g)). Both graphs have a vertex set that is the union of P and H. The author defines an edge of (u,v) in the visibility graph as person u being able to see person v’s hat, and defines an edge (v,u) in the guessing graph as person u guessing the color of hat v. The author defines the edges in this manner for the purpose of convenience later on. So below is an example.





In the above example, A, B, and C are players with hats on and the visibility graph is denoted by the black lines while the guessing graph is depicted by the red lines. Player C can see both player B and A’s hats, but only has to guess his own hat color. Player A is able to see Player B’s hat color but will guess player C’s hat color. Player B is unable to see anyone’s hat color, but is supposed to guess player C’s hat color. 

In this situation, a guessing strategy is defined as a set of functions , one for each edge in the guessing graph dependant only on each edge in its sight graph. In other words, every player can only guess based on the hat colors he/she is able to see. In this example, we say an edge (v, u) in G(g) gives a correct answer when its function evaluates to the color which was assigned to v. The author claims that when k=2, H(g) >0 if and only if at least one of the following holds:

a) There is a vertex G(g) whose out degree is larger than 1

b) There is a directed cycle in the union of G(v) and G(g)

To proof the first requirement, we let the set of possible hat colors be 0 or 1. If the first requirement is satisfied, the guessing graph contains edges (v, u) and (v, u’) for some v in H and some u, u’ in P. Assign the constant value of 0 to edge (v,u) and the value of 1 to (v, u’) and we are guaranteed one correct answer. In other words, if 2 people were to guess a person’s hat color given that there were only 2 possibilities, there will be one correct answer if one person guesses red and the other blue. 

When the second requirement is satisfied, let the vertices of the cycle be 

v1→u1→v2→u2→···→vN→uN 
For I = 1,2,… n-1, let player u(i) guess that the color of v(i) is different from the color of v(i+1) and let player u(n) guess that the color of v(n) is the same color as v(1). This strategy is similar to the strategy mentioned before and will also result in at least one correct answer.
Now, we need to prove that if neither requirement is satisfied, there exists an input where every person guesses incorrectly. Let G be the union of G(v) and G(g), and let G’ be the directed graph obtained by contracting the edges of G(g). If G’ contains a directed cycle, G would have one as well. However, our assumption that there are no vertexes in G(g) without degrees larger than 1 implies that every edge of G’ corresponds to a 2-hop path between two elements of P in G.  Since we are assuming that G contains no directed cycles, G’ is acyclic, hence there exists a coloring of H which will cause every edge to guess incorrectly.
Using hypercubes to approach the game

The hat guessing game can also be interpreted in terms of various restrictions on the structure of hypercubes.  A hypercube or n-cube has all 2n binary words (chains) of length n assigned to the vertices and edges that join two vertices that differ by one letter.  The binary words can be thought of as the possible hat placements.  The direction of the edges represents a player’s guess, which must be either 1 or 0.  The author then examines different strategies of the hat guessing game using hypercubes to evaluate the strategies.

Example: In the 4-cube there is an edge between 1011 and 1010, which can be written as 101* where * represents the the fourth player being able to see what players 1,2,3 are wearing and having to make a guess about his own hat.  The * is therefore either 1`or 0.  So if the player guessed 0, then there would be 1011(1010.

Balanced strategies

There are other strategies for the hat guessing game then discussed previously.  A balanced strategy is constructed in the report and hypercubes are used to evaluate the problem.  First the author proves that if there are n players and 2 different hat colors, then there exists a “balanced” strategy.  In other words, if n players are to be assigned b blue hats and r red hats (r + b = n), the strategy would result in at least b\2 of the people wearing blue guessing correctly and r/2 of the people wearing red guessing correctly.

The balanced strategy can be constructed by grouping the vertices of a hypercube into i levels.  Each vertex is assigned to level i if the binary chain indexing the vertex has Hamming weight i.  The up-degree (or, respectively, down-degree) at a vertex in level i of the hypercube will be the total number of edges between that vertex and the vertices in level i + 1 (respectively, i – 1).  To picture how the direction of the edges represents the possible guesses, the authors us the following figure.
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The balanced strategy would require that at each node in the hypercube the number of directed edges from level i + 1 to that node is up-degree/2 while the number of directed edges from level i -1 to that node is down-degree/2.

To prove this strategy for n even start at any edge and orient it arbitrarily and then keep directing edges as long as the undirected edge which is incident with the current terminal vertex.  The author restricts that the next edge should be from the same level if possible when creating the path.  When the path can no longer be extended, start over at any edge that has not been assigned a direction yet.  For n odd, the same is true except the initial edge chosen must be directed from a vertex of odd up-degree or down-degree.

This balanced strategy of guessing when there are 2 different hat colors can be extended for k different hat colors.  This means that if there are n players and k different hat colors, then there is a strategy so that if ai of the players are wearing color i (1( i ( k) at least ai/k of those people will guess correctly for each value of i.

Optimal strategies are unbiased

The author uses hypercubes to prove that in the many possible optimal strategies for the hat guessing game with n divisible by the number of hat colors, each player is equally like to guess one hat color as any other.  This equal chance of guessing each color implies that the strategies are unbiased.

First the author examines n even players with the 2 hat colors {0, 1} playing an optimal strategy.  This optimal strategy can be thought of as an n-cube with equal in-degree and out-degree at every vertex.  This strategy corresponds to some Eulerian walk on the n-cube.  The number of times the ith player guesses 1 is the number of edges in the center that point up.  Guesses of 0 are the edges pointing down.  The Eularian walk implies the number of up-edges and down-edges are equal (Roberts, Tesman 633).  The n-cube can drawn as seen in the following figure.
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This is extended to k different colors of hats as long k is a divisor of n.  If the players’ hat colors are drawn independently from the uniform distribution {1,2,…,k}, then for each player i and each hat color c, Pr(i guesses c) = 1/k.  To see why, let X be a random variable equal to the number of correct guesses made.  The optimal strategy the players use implies X ( n/k.  Let f(i,c) represent the event player i is wearing color c.  What follows is that E[X| f(i,c)] = the sum of Pr(j guesses correctly|f(j,c)) from j = 1, …, n.  This is equal to (n – 1)/k + Pr(i guesses c | f(i,c)).  Finally (n – 1)/k + Pr(i guesses c) E[X| f(i,c)] ( n/k.  This implies Pr(i guesses c) ( 1/k for every c.

The limited hats game

Another variation of the hat guessing game is to limit the supply of hats.  Consider 3 players and a supply of 2 blue hats and 2 red hats.  It has already been shown that a strategy exists to guarantee one correct guess.  However if the players are a,b,c then using the strategy where a guesses the opposite of what b is wearing, b guesses the opposite of what c is wearing, and c guesses the opposite of what a is wearing will guarantee 2 correct answers.

If H(n; a1, a2, ... , ak) is the maximum number of guaranteed correct guesses when there are n players and a1 hats of the first color, a2 hats of the second color, and so on until ak hats of the kth color (a1 + a2 + … + ak ( n and 0 ( ai ( n for all i).  Several properties result from this variation.  From the original game, it is true that H(n; n, n, …, n) = n/k (n, n, …, n spans k times).  If a1 + a2 + … + ak = n, then H(n; a1, a2, ... , ak) = n since the player’s are guessing the hat not seen.  The hats colors can be permuted which implies H(n; a1, a2, ... , ak) = H(n; af(1), af(2), ... , af(k)) for any permutation of f.

The author offers a hyper-hypercube interpretation of this variation.  Let the kn vertices be words of length n from {0, …, k – 1} and represent the kn possible hat assignments.  The edges represent the decisions that are made in choosing a strategy.  Indicate the player’s guess by marking one vertex on each edge.  Using an averaging argument, the author shows that H(n; a1, a2, ... , ak) is equal to the n possible positions of the ith person, who must guess, along with the allowable combinations of the remaining n – 1 entries divided by the number of ways to place the n hats in allowable combinations.

Also if m is even or k is odd (or both), then H(mk – 1; m, …, m) = (mk + m -2)/2 (m, …, m spans k times).  From the above, it can be shown that H(mk – 1; m, …, m) ( (mk + m -2)/2.  So the strategy only needs to guarantee at least (mk + m – 2)/2 correct guesses.  The two types of edges are those with only one markable vertex and those that involve two; corresponding to the situations where a player can see a full set of hats except for one and therefore knows the correct guess or the situation where a player can see a full set less two of the hats and must make a choice for the guess.

Mark the edges of each vertex associated with m – 1 tuples of the first situation.  Now build a bipartite graph with the rest of the edges and tuples so that the vertex set is S(T, where S is the set of tuples not yet marked and T is the set of vertices to be marked.  Each element in S has degree 2 and each element in T has degree mk – m (even by assumption).  Split the elements of T by duplicating each element (mk – m)/2 times and distributing t he edges so that the piece will have degree two.  This marking will construct a perfect matching between S and T thus each vertex will be marked a total of (m – 1) + (mk – m)/2 times.  Notice (m – 1) + (mk – m)/2 = (mk + m – 2) / 2.
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