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What is a perceptual space?

• A model of a mental workspace
– Points are stimuli within a domain (e.g., colors, faces, musical genres…)
– Distances between points correspond to perceptual dis-similarity

• Why do we care?
– Understand classification, generalization, learning
– Understand the neural underpinnings of behavior and perception: 

similar percepts should have similar neural representations

• So it’s crucial to understand the geometry of similarity



Outline
• What kinds of models do we need to consider for perceptual 

spaces?

• Testing these models experimentally
– Low-level (features) and high-level (semantic) content
– The influence of task

• A complementary analytic strategy
• Open questions

https://xkcd.com/2706
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Toy Scenario

Comparing c and a 
constrains the geometry.

Euclidean: c2 = 2a2

Spherical: c2 < 2a2

Hyperbolic: c2 > 2a2

a
A+A-

B+

B-

c



Are there qualitative differences 
between perceptual spaces?

color lies in a 
continuous domain

objects are often 
categorical



A range of stimulus domains

bluebird

frog

goldfish

dog

colored 
textures

common 
animal names

Stimuli correspond across domains.



Collecting similarity judgments
Subjects click each of 8 comparison stimuli in order of their 

similarity to the central reference

bluebird

Waraich, S.A., Victor, J.D., (2022), J. Vis. Exp. (181)

One trial yields a ranking of 8 similarities to the 
central reference, i.e., (8*7)/2=28 comparison pairs. 



Design Details
• In each domain

– 37 stimuli
– 222 unique trials

• Designed to include all (reference , comparison) pairs
• Designed to include some (reference, comparison) pairs in two contexts
• Otherwise “frozen” randomization

– One trial yields 28 distance comparison pairs
• 222 trials x 28 distance comparison pairs = 6216
• << all possible d(A,B) vs d(A,C) comparisons [N(N-1)(N-2)/2=23310]
• << all possible d(A,B) vs d(C,D) comparisons [N(N-1)(N-2)(N-3)/8=198135]
• But large enough to constrain models

– Each unique trial repeated 5 times
• Allows estimation of choice probability

• 5 domains, 11-12 subjects per domain
– 10 hrs/subject/domain



Inferring geometry from similarity judgments

Get best 
coordinates

Calculate 
pairwise 
distances

adjust point 
coordinates

standard 
multi-

dimensional 
scaling

Win/lose 
heuristic

Distances are measured w.r.t. a noise parameter 

Calculate log-
likelihood of 

observed 
responses
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r: reference
i,j: comparison stimuli

Model 
Probability

Empirical Choice 
Probability

Comparison

0.874/55d(owl, mouse) < d(owl, elephant)

0.151/55d(owl, cow) < d(owl, frog)

.........

Predict trial-by-
trial response 
using decision 

model

D = d(owl, cow) - d(owl,  frog) + noise

𝑃ሺ𝑑ሺ𝑜𝑤𝑙, 𝑐𝑜𝑤ሻ ൏ 𝑑ሺ𝑜𝑤𝑙,𝑓𝑟𝑜𝑔ሻ ൌ 𝑃ሺ𝐷 ൏ 0ሻ

െ𝝈 𝝈0



Validation: numerical simulations

The analysis works for at least 7 dimensions.

True Model: 10DTrue Model: 4D True Model: 5D True Model: 6D True Model: 7D
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Results across the five domains

bluebird

Idiosyncratic 
strategies

bluebir
d

Modelmodel  dimension

No clear difference in 
dimensionality across domains.
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Euclidean

Hyperbolic
(negative curvature)

Spherical
(positive curvature)

Do the domains differ in curvature?
Does projecting the best Euclidean model onto 

a curved surface improve the fit?



No
bluebird
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How are the points arranged?
bluebird

S1

S4

S7

S2



Analyze by hierarchical clustering

bluebird
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tree
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tree
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So far:

• A way to acquire and analyze similarity 
judgments
– Euclidean models seem OK 
– Domains differ in geometry, but need to look at 

(relatively) subtle aspects

• Can we make better use of domain structure?
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Euclidean: c2 = 2a2

Spherical: c2 < 2a2

Hyperbolic: c2 > 2a2

Minkowski (p>2): c2 < 2a2

Minkowski (p<2): c2 > 2a2

a A+A-

B+

B-

c

Minkowski (p<2): c2 < 2a2

Minkowski (p>2): c2 > 2a2

c

a

scale and rotate

Rank order never helps to distinguish; in all cases, c>a!
We need quantitative distances, but also midpoints.

Back to the Toy Scenario



What we need is a perceptual 
space of high dimension, in 

which we can find midpoints.



Visual textures: A good test case

• Functionally important
– Segmentation
– Material estimation

• Technical advantages
– High-dimensional and continuous
– Local image statistics can be independently controlled
– Thresholds are well-characterized and consistent with a 

Euclidean geometry

So things should be simple



A space of visual textures: 10 degrees of freedom
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Victor & Conte, JOSA A 2012



Sensitivity is selective, and similar across observers
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12 normal subjects show a consistent 
pattern of sensitivities

(we now have data on 26 subjects)



Pairwise interactions



S: MC

S: DF

S: DT



Victor, Thengone, Rizvi, & Conte, Vision Res 2015



A quadratic model accounts for perceptual thresholds

,
,

i j i j
i j

Q c cDistance to threshold = ci : the coordinates
Qi,j : the metric

S: MC
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Victor, Thengone, Rizvi, & Conte, Vision Res 2015



What about suprathreshold 
similarity?



Select four approximately orthogonal 
coordinates…
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Stimuli

s  1: b= 0.20 s  2: b= 0.40 s  3: b= 0.60

s  4: g= 0.13

s  5: g= 0.27

s  6: g= 0.40

s  7: c= 0.20

s  8: c= 0.40

s  9: c= 0.60

s 10: a= 0.33

s 11: a= 0.67

s 12: a= 1.00

s 13: b=-0.20s 14: b=-0.40s 15: b=-0.60

s 16: g=-0.13

s 17: g=-0.27

s 18: g=-0.40

s 19: c=-0.20

s 20: c=-0.40

s 21: c=-0.60

s 22: a=-0.33

s 23: a=-0.67

s 24: a=-1.00

s 25: random
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










Collecting similarity judgments

Waraich, S.A., Victor, J.D., (2022), J. Vis. Exp. (181)

One trial yields a ranking of 8 similarities to the 
central reference, i.e., (8*7)/2=28 comparison pairs. 



ranked 
similarity 

judgments

Inferring geometry from similarity judgments

multidimensional 
scaling to maximize 

likelihood

െ𝝈 𝝈0

decision variable:
-

collect choice 
probabilities

…

geometric model

coordinates in units of  
just-noticeable differences 
(JND’s)



For suprathreshold similarity, lengths and angles 
are distorted, and axes are bent.

Similarity judgments, 5 subjects

each unit 
is 2 JND






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What about just brightness?



The luminance () axis is longer, and the fourth-
order () axis is shorter.  But not one-dimensional.

Brightness judgments: 5 subjects









each unit 
is 2 JND

Task: similarity?

Task: equal 
brightness?



Data summary: three tasks


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consensus across five subjects



What are the 
invariants?

Two viewpoints

What are the 
transformations?

One space,
one geometry

Task A
discrimination

Task B

similarity

Task E

grouping

Task D
working 
memory

Task F
material 

properties

Task C
brightness

texture

Multiple tasks, multiple geometries

Task A
discrimination

Task B

similarity

Task E

grouping

Task D
working 
memory

Task F
material 

properties

Task C

brightness



Geometric transformations correspond 
to well-recognized neural operations 

Affine:  k k j j
j

y T x Gain changes

 max( ,0) min( ,0)y a x b xPiecewise linearity Thresholds

Projective: 





kj j
j

k
j j

j

T x
y

h U x
Divisive normalization

But which are needed to account for the data?

Task A
(thresholds)

Task B

(similarity) • trajectories bend at the origin

• distances are disproportionate
• rays are not orthogonal



From threshold to similarity
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From similarity to brightness

suprathreshold similarity

di
m

 3

dim 2

dim 1

brightness

di
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 3

dim 2
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
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each unit is 
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m

 3

dim 2
dim 1



Interim Summary

For the domain of visual textures:

• Threshold and suprathreshold perceptual spaces are both 
Euclidean

• But their geometry differs greatly
– Lines and angles are not preserved
– The transformation is approximately piecewise affine

• Brightness comparisons result in gain changes, but not a 
collapse to one dimension



Pause



A complementary analytic strategy



Dispensing with numeric distances

But what if judgments reflect dis-similarities (D) that can be ranked but not 
added or multiplied? 

We assumed that judgments reflect distances (d) – numbers – that can 
be added and multiplied.

Is d(alligator, clothespin) > 2 x d(coffee, eggplant) ?
Is d(spider, meatball) > d(flower, cat)+d(hat, tie)?

That is, we can ask if D(A,B)>D(A,C), but we can’t ask by how much.  Can we 
still characterize the perceptual space?

Formally: we assume that triadic judgments of dis-similarities (D) indicate the 
rank-order of underlying (but un-observable) distances (d):
D(A,B)>D(A,C) d(A,B)>d(A,C).

Weaker than monotonicity … no claim that D=f(d).

What kinds of inferences can we make about the space that generates d?



We can still test models!
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Using ordinal relationships of dis-similarities

Cannot have 
d(W,X)>max{d(W,Y),d(W,Z)} 

and 
d(Y,Z)>max{d(X,Z),d(X,Y)}

Cannot have 
D(W,X)>max{D(W,Y),D(W,Z)} 

and 
D(Y,Z)>max{D(X,Z),D(X,Y)}

Addtree

Four-point condition:

Of d(W,X)+d(Y,Z), 
d(W,Y)+d(X,Z), and 
d(W,Z)+d(X,Y), the 

largest two are equal.

WY

Z
X

Ultrametric inequality:

d(X,Y)max{d(X,Z),d(Y,Z)}

Ordinal 
relationships 

preserved

Of D(X,Y), D(X,Z), 
and D(Y,Z), the 

largest two are equal.

Of d(X,Y), d(X,Z), and 
d(Y,Z), the largest two 

are equal.YZX

Ultrametric

W

Y Z

X

Ordinal 
relationships 

preserved



Implementation

p{
D

(X
,Y

)>
D

(Y
,Z

)}

Typically, judgements are uncertain. 
So the relationship between D(X,Y) and D(X,Z) is revealed by the probability that a 
subject will judge D(X,Y)>D(X,Z), i.e., the choice probability p{D(X,Y)>D(X,Z)}.

We use a Bayesian approach to estimate p{D(X,Y)>D(X,Z)} from the choice data:

c out of n
judgments 

that 
D(X,Y)<D(X,Z)

     1 1( | , ) (1 )c a n c aL p c n p p

posterior

c=1 
n=6

c=4 
n=6

  1 1( ) (1 )a aL p p p

prior

L(
p)

0 1
p

p{
D

(X
,Y

)>
D

(Y
,Z

)}

joint 
posterior

assume 
independence

Add a discrete 
component

Only some of this volume is 
consistent with the 

ultrametric inequality.

What fraction of the joint 
posterior is in the allowed 

region?

c=1 
n=6

c=4 
n=6

We assume that if p{D(X,Y)>D(X,Z)} is
>1/2, 
=1/2
<1/2, 

then
D(X,Y)>D(X,Z)
D(X,Y)=D(X,Z)
D(X,Y)<D(X,Z)

.
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Addtree test case: Texture
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Ultrametric test case: Faces

MF
young mid old young mid old

Ebner, N. C., Riediger, M., & Lindenberger, U., (2010). 
FACES. https://faces.mpdl.mpg.de/imeji/

……
examples



Ultrametric test case: Faces
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SAW
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From here…

Ultrametric inequality:
d(X,Y)max{d(X,Z),d(Y,Z)}

Ordinal 
relationships 

preserved

Of D(X,Y), D(X,Z), 
and D(Y,Z), the 

largest two are equal.

Of d(X,Y), d(X,Z), and 
d(Y,Z), the largest two 

are equal.YZX

Ultrametric

Addtree

Four-point condition:
Of d(W,X)+d(Y,Z), 

d(W,Y)+d(X,Z), and 
d(W,Z)+d(X,Y), the 

largest two are equal.

WY

Z
X

Cannot have 
d(W,X)>max{d(W,Y),d(W,Z)} 

and 
d(Y,Z)>max{d(X,Z),d(X,Y)}

W

Y Z

X

Cannot have 
D(W,X)>max{D(W,Y),D(W,Z)} 

and 
D(Y,Z)>max{D(X,Z),D(X,Y)}

Ordinal 
relationships 

preserved

Can this approach be generalized to constrain cycle structure (or maybe 
planarity)  based on combinations of inequalities of distances?



Summary

A practical approach to acquiring, and analyzing, similarity 
judgments that:
• Provides metrical information
• Allows inferences about geometry

Methods

Perceptual spaces 
• Are high-dimensional but sparsely populated 
• Differ by degree of clustering rather than dimensionality or curvature
• Depend on task, in a way that meshes with well-recognized neural 

calculations

Data

• How far can we go with rank-order judgments?
• Are we using the right kind of models? 

Questions



Thank you


