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What is a perceptual space?

* A model of a mental workspace
— Points are stimuli within a domain (e.g., colors, faces, musical genres...)
— Distances between points correspond to perceptual dis-similarity
 Why do we care?

— Understand classification, generalization, learning

— Understand the neural underpinnings of behavior and perception:
Similar percepts should have similar neural representations

« So it's crucial to understand the geometry of similarity



Outline

« What kinds of models do we need to consider for perceptual

spaces?
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« Testing these models experimentally

— Low-level (features) and high-level (semantic) content
— The influence of task

* A complementary analytic strategy
* Open questions
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Toy Scenario

Euclidean: c? = 232
Spherical: ¢? < 2a?2
Hyperbolic: c? > 2a2

Comparing c and a
constrains the geometry.



Are there qualitative differences
between perceptual spaces?
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A range of stimulus domains

goldfish  bluebird

colored common
textures animal names

Stimuli correspond across domains.




Collecting similarity judgments

Subjects click each of 8 comparison stimuli in order of their
similarity to the central reference

oA -

One trial yields a ranking of 8 similarities to the
central reference, i.e., (8%7)/2=28 comparison pairs.

Waraich, S.A., Victor, J.D., (2022), J. Vis. Exp. (181)




Design Details

* In each domain
— 37 stimuli

— 222 unique trials

» Designed to include all (reference , comparison) pairs
» Designed to include some (reference, comparison) pairs in two contexts
* Otherwise “frozen” randomization

— One trial yields 28 distance comparison pairs
« 222 trials x 28 distance comparison pairs = 6216
« << all possible d(A,B) vs d(A,C) comparisons [N(N-1)(N-2)/2=23310]
« << all possible d(A,B) vs d(C,D) comparisons [N(N-1)(N-2)(N-3)/8=198135]
« But large enough to constrain models

— Each unique trial repeated 5 times

 Allows estimation of choice probability

* 5 domains, 11-12 subjects per domain
— 10 hrs/subject/domain




Inferring geometry from similarity judgments
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log likelihood relative to

ground-truth model

The analysis works for at least 7 dimensions.

Validation: numerical simulations
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Results across the five domains
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model dimension

No clear difference in
dimensionality across domains.
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Do the domains differ in curvature?

Does projecting the best Euclidean model onto
a curved surface improve the fit? .

Hyperbolic Spherical i
(negative curvature) (positive curvature)

Euclidean




log likelihood relative to geometrically-unconstrained model
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ow are the points arranged?
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So far:

* A way to acquire and analyze similarity
judgments

— Euclidean models seem OK

— Domains differ in geometry, but need to look at
(relatively) subtle aspects

« Can we make better use of domain structure?



The Zoo
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Back to the Toy Scenario
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Rank order never helps to distinguish; in all cases, c>a!
We need quantitative distances, but also midpoints.
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What we need is a perceptual
space of high dimension, Iin
which we can find midpoints.



Visual textures: A good test case

* Functionally important
— Segmentation
— Material estimation

* Technical advantages
— High-dimensional and continuous
— Local image statistics can be independently controlled

— Thresholds are well-characterized and consistent with a
Euclidean geometry

So things should be simple



A space of visual textures: 10 degrees of freedom
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Victor & Conte, JOSA A 2012



Sensitivity is selective, and similar across observers
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Pairwise interactions

Victor, Thengone, Rizvi, & Conte, Vision Res 2015



A quadratic model accounts for perceptual thresholds
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In each plane, isodiscrimination contours are approximately elliptical.

- — c;: the coordinates
Distance to threshold = IZ/:Q,-,,-C,-C,- Q,;: the metric

Victor, Thengone, Rizvi, & Conte, Vision Res 2015



What about suprathreshold
similarity?
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Stimuli




Collecting similarity judgments

One trial yields a ranking of 8 similarities to the
central reference, i.e., (8%7)/2=28 comparison pairs.
Waraich, S.A., Victor, J.D., (2022), J. Vis. Exp. (181) ,k‘ y)



Inferring geometry from similarity judgments
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Similarity judgments, 5 subjects
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No evidence for global curvature
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What about just brightness?



Brightness judgments: 5 subjects
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Data summary: three tasks
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Two viewpoints

One space, texture
one geometry What are the
4// / \\\anariants?
Task A Task B Task C Task D Task E Task F
discrimination similarity brightness working grouping material
memory properties
Multiple tasks, multiple geometries What are the
transformations?
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Geometric transformations correspond
to well-recognized neural operations

distances are disproportionate
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piecewise affine transformation
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Interim Summary

For the domain of visual textures:

* Threshold and suprathreshold perceptual spaces are both
Euclidean

« But their geometry differs greatly
— Lines and angles are not preserved
— The transformation is approximately piecewise affine

* Brightness comparisons result in gain changes, but not a
collapse to one dimension



Pause



A complementary analytic strategy



Dispensing with numeric distances

We assumed that judgments reflect distances (d) — numbers — that can
be added and multiplied.

|s d(spider, meatball) > d(flower, cat)+d(hat, tie)?

|s d(alligator, clothespin) > 2 x d(coffee, eggplant) ?

But what if judgments reflect dis-similarities (D) that can be ranked but not
added or multiplied?

That is, we can ask if D(A,B)>D(A,C), but we can’t ask by how much. Can we
still characterize the perceptual space?

Formally: we assume that triadic judgments of dis-similarities (D) indicate the
rank-order of underlying (but un-observable) distances (d):
D(A,B)>D(A,C)«> d(A,B)>d(A,C).

Weaker than monotonicity ... no claim that D=f(d).

What kinds of inferences can we make about the space that generates d?



We can still test models!
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Using ordinal relationships of dis-similarities

Ultrametric
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largest two are equal.



Implementation

Typically, judgements are uncertain.
So the relationship between D(X,Y) and D(X,Z) is revealed by the probability that a
subject will judge D(X,Y)>D(X,2), i.e., the choice probability p{D(X,Y)>D(X,Z)}.

>1/2, D(X,Y)>D(X,2)
We assume that if p{D(X,Y)>D(X,2)}is 5 =1/2 ¢ then— D(X)Y)=D(X,Z2) .
<1/2, D(X,Y)<D(X,2)

We use a Bayesian approach to estimate p{D(X,Y)>D(X,Z)} from the choice data:
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Addtree test case: Texture
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Ultrametric test case: Faces

mid old

Ebner, N. C., Riediger, M., & Lindenberger, U., (2010).
FACES. https://faces.mpdl.mpg.de/imeji/



Ultrametric test case: Faces

ST

one. pooy|a| 6oj




Ultrametric
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Ultrametric inequality:
d(X,Y)<max{d(X,Z),d(Y,Z)}

Addftree

Four-point condition:
Of d(W,X)+d(Y,Z2),
d(W,Y)+d(X,Z), and
d(W,2)+d(X,Y), the
largest two are equal.

From here...

Of d(X,Y), d(X,Z), and Of D(X,Y), D(X,2),
d(Y,Z2), the largest two . and D(Y,Z), the
are equal. Ordinal largest two are equal.
relationships
preserved

Ordinal
relationships
preserved

Z
Cannot have

Cannot have
d(W,X)>max{d(W,Y),d(W,Z)} D(W,X)>max{D(W,Y),D(W,2)}

and and
d(Y,Z)>max{d(X,Z),d(X,Y)} D(Y,Z)>max{D(X,Z),D(X,Y)}

Can this approach be generalized to constrain cycle structure (or maybe
planarity) based on combinations of inequalities of distances?



Summary
Methods

A practical approach to acquiring, and analyzing, similarity
judgments that:

* Provides metrical information
« Allows inferences about geometry

Data

Perceptual spaces
* Are high-dimensional but sparsely populated

« Differ by degree of clustering rather than dimensionality or curvature

 Depend on task, in a way that meshes with well-recognized neural
calculations

Questions

 How far can we go with rank-order judgments?
« Are we using the right kind of models?
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