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Mapper

The Mapper Graph is an unsupervised soft clustering algorithm which
clusters data in the form of a graph.

G. Singh, F. Mémoli, and G. E. Carlsson, Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, 4th Symposium on Point Based
Graphics, PBG@Eurographics 2007, Prague, Czech Republic, September 2-3, 2007, Eurographics Associa- tion, 2007, 91-100, doi: 10.2312/SPBG/SPBG07/091-100.
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Mapper

Definition. Let X € R% be a data set. Given a continuous lens f: X —» R",
cover U = {U,;};¢; of f(X), and clustering algorithm we define the Mapper

graph as

M(f, W) = N (f~H (W)
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Definition. Let X € R% be a data set. Given a continuous lens f: X —» R",
cover U = {U,;};¢; of f(X), and clustering algorithm we define the Mapper
graph as
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Mapper

Definition. Let X € R% be a data set. Given a continuous lens f: X —» R",
cover U = {U,;};¢; of f(X), and clustering algorithm we define the Mapper
graph as

M(f, W) = N (f~H (W)
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Example.

Let X c R3 be a point cloud of a torus.
o Choose f: X - R? to be the coordinate projection to R2.
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o Choose f: X - R? to be the coordinate projection to R2.
o Cover f(X) with overlapping squares.

FEAL :l
NG P
v a& s e
-dﬂ'{ﬁfkﬁ‘?- . .'“l'." ". 4%
LRI o AT
vl . .(,‘Ta b ) A Ol
A T e Y B
4 T4 S g -
u‘.fj"" *;‘.-:. H
Litels.
f EY BT
ooy, o [P
.-.l‘."‘\‘i.:." :
ﬁ :.;\‘:‘..._ o X
ot :._ _-‘_‘- -
{) R e
ronle 4G ok,
ﬁ”’ 23
,:2“"",:{‘ o
e Tk 2 A
] s Tk '»
%',.‘I:‘."“;. 0 b
s -
7




Example.

Let X ¢ R3 be a point cloud of a torus.

@)
©)
@)

Choose f: X - R? to be the coordinate projection to R?.
Cover f(X) with overlapping squares.
Choose DBSCAN as the clustering algorithm.




Mapper

The intersection structure of a cover
can yield higher dimensional nerve

when f(X) c R2.
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Mapper

The intersection structure of a cover
can yield higher dimensional nerve

when f(X) c R2.
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The intersection structure of a cover
can yield higher dimensional nerve
when f(X) c R2.
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2-Mapper

Definition. Given a point cloud X, continuous filter f: X - R™, cover U and
clustering algorithm, we define the 2-Mapper complex of X as

M(f,U) = N2(f (W)
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2-Mapper

Question. How do we determine
parameter choices for 2-Mapper?
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Optimal Covers

2-simplices only require a non-empty triple intersection of cover sets.
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2-simplices only require a non-empty triple intersection of cover sets.

Cubical Cover Lattice Cover

Four 2-Simplices One 2-Simplex



Defining Covers

Definition. Let X c R? be a data set. The bounding box on X is the space

B =14 ,[m;, M;], where m; = min ;(x) and M; = max m;(x) for coordinate
X X

projections ;.

We define each cover with parameters k and g representing the scale for
the number of cover sets and their overlap proportion, respectively.



Cubical Cover

Definition. Let Z c R™ be a compact topological P 200 S T
space with bounding box B. The cubical cover U on Z R IRIE
constructed with k > 1-intervals and overlap fraction | .;..-,=;:-;—~f*-- f—,}—l— A
0 < g <1isacoverof boxes U = {U,},c4 SO that Lr':- T_ --.:,j- L ik
each cover set is of the form rf"ﬁ"f~ 2 ARy

] et WO o

i i RS
Ua,s — 1_[ [C(x,i — EL; Cai + El] | J_‘ L_ I'—‘ L—r
=1 -._.n{h ,:;_ o ;’- 733

Where cq; = m; + (a; — DA — @)L + 21,
M;—m;

and li = m



Cubical Lattice Cover

Definition. Let Z ¢ R" be a compact topological space with bounding box
B = []i=,Im;, M;]. We define the cubical lattice cover U over Z constructed

with k-intervals and overlap fraction g as the cover U = {U¢} cegngn WhOSE

cover sets are hypercubes defined

- 1 1
”fzglc<f"‘z<1—g>)'c< )

M;—m;

with ¢ = max
1<isn k—(k—-1)g



A5-Lattice Cover

Definition. Let Z ¢ R" be a compact topological
space with bounding box B = [[iL,[m;, M;]. Let A5
denote the root lattice generated with matrix

1 0
MAZ = —1 \/§
2 2

The A5-lattice cover defined with k intervals and
overlap fraction g is a cover £ =




Analysis of 2-Mapper through Cover Choice

Stochastic Cubical Cover Cubical Lattice  A;-Lattice Cover
Triangle in R® Cover



Analysis of 2-Mapper through Cover Choice

0100 stochastic triangles generated in R®

o 2-Mapper complexes constructed with k = 10 and g = 0.3

Cubical Cover
Cubical Lattice Cover
A*-Lattice Cover
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Betti 1

2 Principal Components
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Count

Analysis of 2-Mapper through Cover Choice

0100 stochastic triangles generated in R®

o 2-Mapper complexes constructed with k = 10 and g = 0.3

Cubical Cover
Cubical Lattice Cover
A*-Lattice Cover
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Persistent Homology

Construct a filtration of simplicial complexes for r > 0,
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Construct a filtration of simplicial complexes for r > 0,
VR, (X) € VR, (X) € € VR, (X)




Persistent Homology

Applying homology yields a persistence vector space:
H.(VR, (X);Z,) -» H,(VR,, (X);Z;) — - = H.(VR,, (X); Z;)




Barcodes and Persistent Diagrams

We track the birth and death times for each cycle as a persistent barcode or
persistence diagram.
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Distances between diagrams

Definition. Let D, (V) and D, (W) be two degree-k persistence diagrams for
persistence vector spaces V and W.

Letll = {r: D, (V) - D, (W)} be the set of bijections between their points to
each other or to the diagonal {(x,x) : x € R, }.

The bottleneck distance is defined as

dg(Dx(V), D, (W)) = inf sup [lx —w(x)|lo
TEIl yep, (V)



Multiscale Mapper

Definition. Let X and Z be topological spaces. For a well-behaved continuous
map f : X —» Z and finite open cover U = {U,},ec4 Of Z the generalized Mapper
complex is

M(f,U) = N(f* (W)

Tamal K. Dey, Fecundo Mémoli, and Yusu Wang. Multiscale Mapper: Topological Summarization via Codomain Covers. Proceedings of the 2016 Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 997-1013. 2016.



Multiscale Mapper

Definition. A tower of covers with resolution s € R, is a collection of covers
U = {Ug}es With maps u, 5: U, » Us so thatu, . =1d and u,, = us, o u, s for
alls<e<§<y.

We write res(U) = s for the resolution of tower 1.

Tamal K. Dey, Fecundo Mémoli, and Yusu Wang. Multiscale Mapper: Topological Summarization via Codomain Covers. Proceedings of the 2016 Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 997-1013. 2016.
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Definition. Let X and Z be topological spaces and f: X — Z be a well-behaved
continuous map. Let U be a tower of covers of Z.

The Multiscale Mapper is the tower of simplicial complexes defined
MM, f) = N (f* Q).

Tamal K. Dey, Fecundo Mémoli, and Yusu Wang. Multiscale Mapper: Topological Summarization via Codomain Covers. Proceedings of the 2016 Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 997-1013. 2016.



Multiscale Mapper

Definition. Let X and Z be topological spaces and f: X — Z be a well-behaved
continuous map. Let U be a tower of covers of Z.

The Multiscale Mapper is the tower of simplicial complexes defined
MM, f) = N (f* Q).

For a finite sequence res(U) < g < ¢, < - < g,

H, (N (f*(ugl))) > H, (N (f*('ugz))) > o H, (]\f (f*(ugn))).

Tamal K. Dey, Fecundo Mémoli, and Yusu Wang. Multiscale Mapper: Topological Summarization via Codomain Covers. Proceedings of the 2016 Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 997-1013. 2016.
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Multiscale Mapper

Definition. Let ¢ > 1 and s > 0. A finite tower of covers I3 = {W,} over a
compact metric space (Z,d;) is (c,s)-good if

1. res(W) = s,and s < diam(Z2)

2. diam(Wg’a) <eforall W,, e W,,e=s

3. VO c Z with diam(0) = s, there exists W € W_._gjam(o) SUch that 0 c .

Tamal K. Dey, Fecundo Mémoli, and Yusu Wang. Multiscale Mapper: Topological Summarization via Codomain
Covers. Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms, pages 997-1013. 2016.



Multiscale Mapper

Definition. Let ¢ > 1 and s > 0. A finite tower of covers I3 = {W,} over a
compact metric space (Z,d;) is (c,s)-good if

1. res(W) = s,and s < diam(Z2)

2. diam(Wg’a) <eforall W,, e W,,e=s

3. VO c Z with diam(0) = s, there exists W € W_._gjam(o) SUch that 0 c .

Example. A tower of covers U = {U.}.; With U, = {B./,(2) | z € Z}is a (2, s)-
good tower of covers of compact metric space Z.

Tamal K. Dey, Fecundo Mémoli, and Yusu Wang. Multiscale Mapper: Topological Summarization via Codomain
Covers. Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms, pages 997-1013. 2016.



Multiscale Mapper

Theorem (Dey, M., W.). For two (¢, s)-good tower of covers U, D, the
bottleneck distance between two diagrams produced from their multiscale
mappers is bounded,

dg (D (MM(f, 1)), Dy (MM(f,))) < c.

Tamal K. Dey, Fecundo Mémoli, and Yusu Wang. Multiscale Mapper: Topological Summarization via Codomain
Covers. Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms, pages 997-1013. 2016.



Multiscale 2-Mapper

Definition. Let Z c R™ be a compact topological space. Then for lens
function f: Z - R™ and tower of covers U = {U,}... over f(Z), the Multiscale
2-Mapper, denoted MM, (f, U), for a finite sequence s < & < -+ < g, is of
filtration of 2-Mapper complexes

N2(F(U)) » N (£ (Us,)) = - > N2 (F7(Us,)).




Tower of Cubical Covers

Definition. Let X ¢ R"™ be a compact topological space with bounding box B
and cubical cover U, constructed with k-intervals and overlap fraction g so
that each cover set is of the form

- Li Li
Ua,s = 1_[ Ca,i — Erca,i + E
=1

M;—m;
k—(k-1)g

Where Cq,i = My + (ai — 1)(1 — g)ll +%ll and li =



Tower of Cubical Covers

Definition. The tower of cubical covers U on X is a tower U = {U,}.-; With
resolution res(U) = s = ||(I4, ..., L) |l-.

For e > s, each cover U, = {Ug}__, such that for each a € 4,

n

1 1
Ua,e = Cai — E (li — &), Cai T E (li + &),
i=1

For some ¢’ = 0 so that diam(U, ) = «.

This is a filtration over the parameter g.



Tower of Cubical Covers constructed with 0.1 < g < 0.5 and
k = 6.

%'

AL T A E

L

. )

.y

¥

57

2




Tower of Lattice Covers

Definition. For X ¢ R" with bounding box B, let U, be a cubical lattice cover
constructed with k-intervals and overlap fraction g.

The tower of cubical lattice covers U = {U,}.- is a tower of covers with
resolution res() = s = %.

For each ¢ > s we define each cover U, = {Ug}__, so that

ae — CSa,i =5\ 77—~ — € |CSai TS5\ 7 € 11,
L 2\1—g 2\1—g

For some &' > 0 so that diam(U, ;) = «.




Tower of A,-Lattice Covers

Definition. For X ¢ R™ with bounding box B, let £, be an A}-lattice cover
constructed with k-intervals and overlap fraction g.

The tower of A} -lattice covers £ = {L,}.- is a tower of covers with

. __ 2c(1+g)
resolution res(8) = s = N
For each ¢ > s we define each cover L, = {B (cfaMA;,ée)} withe =s+ ¢
aeEA

for some ¢’ > 0.
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Stability for Covers

Theorems (F.). A tower of cubical (lattice) covers with resolution s
constructed with k-intervals and overlap fraction g is (3, s)-good for k > /n.

Theorem (F.). A tower of A}-lattice covers with resolution s, constructed with
k-intervals and overlap fraction g is (3, s)-good for k > \/2—5 (1+ 9).




Stability for Covers

Theorems (F.). A tower of cubical (lattice) covers with resolution s
constructed with k-intervals and overlap fraction g is (3, s)-good for k > /n.

Theorem (F.). A tower of A}-lattice covers with resolution s, constructed with
k-intervals and overlap fraction g is (3, s)-good for k > \/2—5 (1+ 9).

o Two Multiscale 2-Mapper objects with these towers are close with respect
to the bottleneck distance!



Multiscale Mapper with DBSCAN

Definition. DBSCAN is a non-parametric density-based clustering algorithm
constructed with parameters € and Minpts representing the search radius
and minimum number of points per cluster, respectively.

W. Bungula and . Darcy, Bi-Filtration and Stability of TDA Mapper for Point Cloud Data, arXiv: 2409.17360
[math.AT], 2024.
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Multiscale Mapper with DBSCAN

Definition. DBSCAN is a non-parametric density-based clustering algorithm
constructed with parameters € and Minpts representing the search radius
and minimum number of points per cluster, respectively.

U @

Minpts = 3

° Uy = C1q U Cyq UNg

W. Bungula and I. Darcy, Bi-Filtration and Stability of TDA Mapper for Point Cloud Data, arXiv: 2409.17360
[math.AT], 2024.



Multiscale Mapper with DBSCAN

Theorem (Bungula, Darcy). Let X be a data set with tower of covers U and
use DBSCAN to cluster X with fixed parameters € and Minpts < 2. Define
Ce = {Cpe : p € U is a core point}. Then € = {C.}.», is a tower of covers with
maps c. s : C. = Cs for all U, € Us which are closed under composition.

W. Bungula and . Darcy, Bi-Filtration and Stability of TDA Mapper for Point Cloud Data, arXiv: 2409.17360
[math.AT], 2024.



Multiscale Mapper with DBSCAN

Theorem (Bungula, Darcy). Let X be a data set and assume DBSCAN is
used to cluster X with fixed hyperparameters € and Minpts < 2. Then for all
U, S U,

o There is a filtration of simplicial complexes ¢, s : N'(C.) —» N (Cs).

o There is a filtration of homology groups f; s : Hi, (V' (C.)) = Hi(NV(Cs)) for
each degree k.

W. Bungula and . Darcy, Bi-Filtration and Stability of TDA Mapper for Point Cloud Data, arXiv: 2409.17360
[math.AT], 2024.



Stability for Covers with DBSCAN

Theorem (F.). Let U be a tower of cubical, cubical lattice, or A%-lattice
covers with resolution s over a data set X. Define € = {C.}...’ to be the
cluster cover subordinate to U using DBSCAN with fixed parameters € and
Minpts < 2. Then Cis a (4,s')-good cover where s’ < s.




Stability for Covers with DBSCAN

Theorem (F.). Let X ¢ R™ be a data set, f : X - R" be a continuous lens,
and U, W be two towers of covers (cubical, cubical lattice, or A3-lattice).
Cluster X using DBSCAN with fixed parameters € and Minpts < 2. Then for
each k > 0,

dg (D (MM, (£, €y)), D (MM, (f, E))) < 4



Persistence barcode
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The bottleneck distances for these two barcodes is 0.0894 in degree zero
and 0.1789 in degree one.



Building an Algorithm

Let MM, (f, €) be the Multiscale 2-Mapper computed over data set X with
finite tower of covers U and clustered with DBSCAN using parameters ¢ and

Minpts.



Building an Algorithm

Let MM, (f, €) be the Multiscale 2-Mapper computed over data set X with
finite tower of covers U and clustered with DBSCAN using parameters ¢ and

Minpts.

*
Ct—1,t

Co cq
M, (£, Ce, ) = M, (f,Ce, ) IR T (f.Ce,)

Write M; = M,(f, C,,) where M; has vertex set V.

For each node n € V; we write n = (X,,, Up ¢, Cp_ ;)

/1N

Data Cover set Cluster



Building an Algorithm

Simplex trees are used for computing with simplicial complexes and
filtrations of simplicial complexes.

D
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Each simplex o is stored with filtration time t,.

J.-D. Boissonnat and C. Maria, The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes,
Algorithmica 70 (2014), no. 3, 406-427, doi: 10.1007/s00453-014-9887-3.




Building an Algorithm

Dream Construction. For data set X, lens f : X - R", tower of covers U, and
DBSCAN parameters € and Minpts.

o Create 2-Mapper complexes M; for each cover in cluster cover C.
o Start with an empty simplex tree.
o Insert each M; sequentially.

o Done!



Building an Algorithm

Dream Construction. For data set X, lens f : X - R", tower of covers U, and
DBSCAN parameters € and Minpts.

o Create 2-Mapper complexes M; for each cover in cluster cover C.

o Start with an empty simplex tree.

@eaeh M; sequentially.
oDene! \

Clustering complicates our algorithm.




Building an Algorithm

Identity

|
bml I)Iﬂz

Cluster Collapse

B.) .
. o
biny bins

End

bm] b,

Cluster Creation

ooo@
biny bins

Cluster Creation

W. Bungula and I. Darcy, Bi-Filtration and Stability of TDA Mapper for Point Cloud Data, arXiv: 2409.17360

[math.AT], 2024.



Building an Algorithm

Single Cluster Collapse

O,a,p) (1,aq) (0,a,p)

G, j+1

(2,B,x) (1,5,x)
MJ' Mj+1



Building an Algorithm
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Building an Algorithm
Mj

Double Cluster Collapse 0,a,p) (2,0,9)

@
= WBx) (BB

(2,a,p) (3,a,9) (0,a,p)
I I Cj j+1 I
0,8,x) (1,B,y) (1,B,x)

M; M;j 4



Building an Algorithm

Sketch: For data set X, lens f : X - R", tower of covers U, and DBSCAN
parameters ¢ and Minpts.

o Create 2-Mapper complexes M; for each cover in cluster cover C.

o For pairs (M;, M; ) create maps ¢; : M; - M, _, which deal with single and
double collapses of clusters.

o Create Simplex Tree with 2-Mapper complexes M,, M, ..., M;
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Future Directions

o Estimation for likely trajectories in dynamical systems: Trajectory Mapper.

o Engineering Mapper Complexes: Computing probabilities for 2-Mapper
given certain parameters.

o Visualization of clustering in genetic ancestry for human populations



