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Graphs in the Wild

@ Graphs with functions show up everywhere.
@ We want to cluster and compare them.

@ Need a meaningful and computable distance.
@ But it's expensive to compute.

Real-world examples: brain activity, traffic flow, and social networks
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Key Problem

SR | NS
@ Study graph-based topological signatures. c ::
@ Focus on Mapper graphs. ~ j}
@ Use interleaving distance. 3 1
e Computation is NP-hard. — - - -
@ Loss function to upper bound. ; 4
@ How to get the best upper bound?

Mapper graphs of leaf data

Image credit: Percival et al., 2024
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We make Mapper graphs ML-friendly
by
optimizing a loss that bounds interleaving distance.
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Category Theory: Basics

[ ]
@ Study of structure across different areas. (ﬁiﬂ

L]
@ Relation between structures. NS J

® e o

@ Two main ingredients:

e Objects
@ Morphisms

@ Rules: composition + identity S ;
et: category of sets
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Category Theory: Maps Between Categories

@ Functors: maps between categories

e Objects — objects [ '9\_‘
e Morphism — morphisms ( /Aj

@ Natural transformations: Relates functors

o Natural transformations satisfy:

F
X F(X) —— G(X) Ce nl 1 oD
lf F(f)i JG(f) \—G/

Y F(Y) - G(Y)

Functors and natural Transformations
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Category Theory: Special Attention

F : Open(U) — Set

@ Open(U/): Category of open sets over U

e Objects: Open subsets of U
@ Morphisms: Inclusions

@ Set: Category of sets

o Objects: Sets
e Morphism: Set maps

@ F maps
@ open sets to sets
e inclusions to extension set maps
e Satisfies consistency across overlaps < cosheaf
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Mapper Graphs

@ A topological tool to summarize high-dimensional data

@ Built using:
e A lens function (real-valued)
o A cover on the lens output
o Clustering within each cover set

@ Nodes — clusters, Edges — shared data points

@ Captures shape and structure of data.

Image credit: Percival et al., 2024
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Mapper Graphs: Categorical Framework

Goal: Express mappers as cosheaves.

o Given:
e Data X with function f : X — R
e Cover U = {U,} of R

— 0 @
— e © o
@ Preserves connected components of f~1(U. | —* 3
P (Ua) sl e Sy |
—e Y |1 ® ol
o e | ® @

o Discretize using agridon R [——ee" [l e e
A Image credit: Percival et al., 2024

@ Represent f in cosheaf form

@ Encoded as functor: F : Open(U{) — Set

@ Components stored in mo(f~(U)).
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Mapper Graphs: Categorical Framework

Goal: Express mappers as cosheaves.

o Given:
o Data X with function f : X — R 4
e Cover U = {U,} of R

@ Preserves connected components of f~1(U,)

@ Discretize using a grid on R

@ Represent f in cosheaf form

@ Encoded as functor: F : Open(U{) — Set

@ Components stored in mo(f~(U)).
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Mapper Graphs: Categorical Framework

@ Mapper bounded in [—L, L].

@ Cubical complex K of R with diameter §.

e Cover U ={U,,} U{U;}. 4 -
o U, = ((i —1)5,(i + 1)) I
o U, = (i5, (i + 1)(5) N
@ Open sets in S C U using Alexandrov topology. - rzllilj . 2L
e Basis: S, = {U,,,U,,,U,,,} and S, = {U,,} o
e Geometrically, |S,| = U, and |S;| = U,. 7i
@ Mapper (X, f) is given by

F: Open(ld) — Set
S = mo(f1(1S]))
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Mapper Graphs: Open Sets

U.
UT,;_JE(L)

o Cover elements: Uy,, U- Tica Tic1 . Ti  Tip2

Oi—o 0Oi—1 O; Oi+1 Oi+2

@ Open sets in Alexandrov topology: S;;, Sr,

o Different, but same geometrically.
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Interleaving Distance in TDA

[ Persistence Modules ]
4

Reeb Graphs

Interleaving
Distance

‘ Functor Categories

Mapper Graphs

‘ Category with a flow ’
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Distance Between Mappers: Interleaving Distance

Goal: to compare F, G : Open(U{) — Set.

@ Define n-thickening of open sets.
e Geometrically, (id, j8) — ((i — n)d, ((j + n)d)

@ Thickening of functor F" := F o (—)"
e Means, F"(S) = F(S")

@ n-interleavingis o : F = G"and ¢ : G = F".

@ Must satisfy diagram commutativity.
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Distance Between Mappers: Interleaving Distance

F G
@ Diagrams to commute:
) L]
F(S) Flees™ F($™) F(S™) « » A
*’ku \5: I '3 c o’ .
G(S™) a(s) R [elfa] . o e .
@ Smallest n is the interleaving distance. s e .
o NP hard. ' ' Y
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Bounding Interleaving Distance: Assignment

@ Assignment (,1)): Natural transformation like maps without commutativity.

@ Find n to commute:

e Triangle: For interleaving
e Parallelogram: For natural transformation

Fscs)

F(S) F(52) F(s5%)
asm) G(s) e G(st)
F(s) —1L F(m) F(sm) —, ()

G(5™) —ae G(T™) G(S) —a G(T)
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Bounding Interleaving Distance: Loss Function

@ Given n, how much to thicken (k), so that the diagrams commute for n + k?

F(S) — € psy s p(s2nth)

RN

G(S™)

F(s) 1L pr)

KPS\ KPT\
G(S™) g GT™) —— G(T™F)

@ Diagram loss L, L7, La, Lv is a quality measure.
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Bounding Interleaving Distance: Loss Function

@ Loss L(p,1): Measures how far from commuting.

Lo(0 ) = max {LE%, L35 L0, 120 150 1%}
peEK

@ Only on basis elements Lg(p, ).

@ Computation is polynomial.

Theorem ( Chambers et al. (2023))

For an n-assignment, ¢ : F = G" and ¢ : G = F",

di(F,G) < n+ Lp(p, ).
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Integer Linear Programming

@ Linear Programming (LP): optimize a linear function under linear constraints.
o Objective function
o Constraints

@ Integer Linear Programming (ILP): same as LP, but variables must be integers.
@ Used in scheduling, logistics, networks, etc.

@ ILPs are harder to solve than LPs (NP-hard).

@ General formulation:

Maximize ¢'x

Subjectto Ax<b
XJZO VjE{l,"-,n}
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Integer Linear Programming

o Efficient implementation exists
@ Python Library: PuLP

@ Solver: CBC, Gurobi, CPLEX

Goal: Use ILP to optimize the loss
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Objective

Can we optimize the loss function to get a better bound on the interleaving distance between
two mapper graphs? J

Preliminaries:
@ Start with two mappers F, G : Open(/) — Set.
@ Both mappers are in B = [—L, L].
@ Vertex at every integer function value.

@ Only one connected component each.
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Data Structure: Mapper as Graphs

F G
@ Store F : Open(U) — Set as graph F ~ (VE, EF). ) :+ AN
@ Use grid structure on R. + : ) .
@ Generate vertex for F(S,,) and edge for F(S.,). . I\ N
o Vi =112, F(S,) and Er = 1125 F(S,). B S B BN
@ Vertices: stored with height. - + e Y
@ Assignment: vertex and edge maps.

Diagram commutes ~ same connected component.
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Commutativity and Connected Components

Tj+4 L] ¢
Ti+a o ] .
B = T T A
Oj+2 [ 4 . (" S e
FIC] Tit1 o [ 1
F(5:) ——— F(S5) - Tit1 %} """ “@ s :’0 :
s, o @ it i Sl e B
®s. Tivl N .
TN, NGy e, O-VJ-LL .......... .. ------- .- --------------- v
G(5r) —gg €"(50) el . ! )
7j—3 ¢ ° ] [ ]
‘ \ Y \ Ti—4 ] ] v
, [w]
1 [e]
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Commutativity and Connected Components

Tjta . [
......... iy e s b
Tit2 | I
o542 ] o ! o . I
FIC] REE N N L I
F(5:) —— F(Ss) . Tt (? : b@ . ’O :
s, a5 R R e S |
#sy Tj-1 [ ]
Tj-1 [ ] : L] |
G"(S-) I G"(S;) — G(Szfk TR JER O TR L R
g3 ¢ o [ o
¢ \ Y \ Tj—4 L] [ [}
W] —— [¥]

1 ] —— (€]
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Data Structure: Maps as Matrices

Goal: Express diagram commutativity as matrix
multiplication.

@ Order vertices by increasing function values.
@ Same for edges (lower vertex).

@ Assignment: vertex and edge maps.

@ Matrix whose rows and columns are these.

@ Block Structure.

Ishika Ghosh (MSU) TDV Workshop 2025

Tj+2
Tj+1
Ti
Tj—1

Ti+2

Oj+4
oj+3
Oj+2
Oj41

I

®ug ® vg
[ Xk e U6

U5
o eui o U3
.y, ® UL

(v, v2), 055 1 (vg, va), -
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Assignment Matrices

@ Store maps like ¢ : F — G".

@ Place 1 if ¢(v) = V/, 0 otherwise.

e V10 [ T
@ For a valid map: only one 1 for each column. LG $ v
o U7 [ I [ R

F Y e 0’1:3—. mony’

v Vg V3 U4 2

v} L ® U1 ®

vh F G"

G" 4, 1

@ To have lower loss, need better assignment.
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Other Matrices

@ Distance Matrix:

e How close are same-height vertices or edges to being
connected?

e V10
@ Entries are positive integers.
®vug ® vy

@ Boundary matrix: edge-vertex connection. oUT 9 VO

e Up and down. Y| eva  ews

e Binary ‘., 7,
@ Inclusion matrix: for F = F". F

e Binary.
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Loss Terms as Matrix Multiplication

@ Diagram:
F(s;) 5 F(s,) ¢ ’
;\a \\i‘a \\.l
G(8:) 5 G (50) 1,

sohte V. BE
@ Top-right: V' - Bf
o Left-Down: B, - ME
@ In matrix terms:

5r:,50;
max L3777 = max {x | x € D& (MV . Bﬁ — B, - ME>}
)

@ computing loss — finding largest matrix element.

Ishika Ghosh (MSU) TDV Workshop 2025 June 9, 2025



Loss in Matrix Terms

Ishika Ghosh (M

Loss Diagram Matrix Multiplication Eval.
Term
F(S) —5Ly p(s,) v Bt _pBt .1
L5 . DY (MY - BL =B - M
i Sy Vs | Do (M Bp =B
£5 () —gzr G'(S5)
A LS
&3 F(S;) ——=— F"(S,) v T T
Ys, \’4 4 1
: DY (M) - By = Bha - M.
G(87) —gig G(S0) mao[(‘zij
= Tij €
F(s,) —L Fis) - .
eS| o DY (MY I = 1% - 1))
.| D (1T~ 5017
is G"(9) —ggr> (S
E% F(s,) —Ls Fon(s,) Dv. VoY V)
EF | Lo " Yo (M) TG = I - M
7 DE, (MP. 1B~ 1B, .1
68— G(S))
FIC) 5
F(s,) —— & g, v (1v y y
15 (Sp) (Sp) DY, (1Y IY - MY, M
o |V o e DE, (IE, .TE — M7 .
E (s, e max [%ﬂ
=) F7(S,) v (v v y @€
= LS v RN Dgan (Ign -1 = Mzn - M
A o
DE, (1. -1E -1 - M
a5 g Gy | NG
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Implement Loss Optimization

@ Question: Can we formulate loss optimization as a linear program?
o Yes! Both the objective function and constraints can be linearized.

@ Discretized setup calls for integer linear programming.
@ ILP is formulated as follows:

Minimize /¢
Subject to BZX,;-:’T VX,;-:’TEDGVH( ~B,T:—BT,,~ )
Soxph=1 vxem) ne{po"p,u"} Ac{V, E}
i
xjj > 0
(more constraints)

@ Nonlinearity in triangles (e.g., . ) is linearized with additional variables.
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Experiments with Small Mappers

@ Small mappers where interleaving distance can
be computed.

@ Line mapper: One vertex at every height.

@ Torus mapper: A loop in the middle.

e Interleaving distance is [2].

« e e

Upper Bound

e

3 7 TR
Size of the I6op in the torus mappergraph

Ishika Ghosh (MSU) TDV Workshop 2025
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Experiments with Small Mappers

@ Interleaving can be achieved for n =1

Interleaving Loss vs Thickening Parameter

Line Graph Torus Graph, height h=11 61 — Loss
~— Upper Bound: n + Loss

14 14 I True Interleaving Distance
12 12

4
10 10
s 0 g5
& 6

2
4 a
2 2 .
° 0

o

1 2 3 4 5 6
Thickening parameter n

@ Interleaving: h =11, [%] =3
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Optimization with n = 1 is not Enough

@ Found mappers where upper bound goes down for higher n.

010 F G 3
' °
a8 ° °
° oo 2 :
o6 ow [ 2 ) —— Computed Loss
Jd J ! ——— Bound: Loss +n
-==- True d,
o s o . ° :
4 14 E
s o ¢ ° :
o9 . ° °
Sx 0z oy
0+ :
() (] [ ] T T T
1 2 3
n
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Search for Optimum n

@ n =1 does not always give best upper bound (n + loss).

@ Combination of binary and exponential search for n € 0,1,---,2L.
Is loss 07
no : : : : >
0 1 2 4 8
loss = 0

isomorphism

5

Is loss still 07
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Experiments with Images

o MPEG7 image dataset.
o Compute mappers on different objects.
@ Y-coordinates as lens function.

o Compare using optimized loss.

Ishika Ghosh (MSU) TDV Workshop 2025
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Experiments with Images

@ Pairwise distance with the optimized mapper loss

@ MDS to preserve pairwise dissimilarities

Apple

Y J

Horseshoe Seasnake

Categories
® apple ®
® cup
fork [ ]
@® horseshoe
seasnake ® ® [
3
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Experiments with Images

@ KNN classification with K=7.

@ Accuracy achieved 84%.

o Caveat: Highly dependent on the mapper parameters.

0.4

Actual

13 5 7 9 11131517
be hbe

Ishika Ghosh (MSU)
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Open-Source Shoutout: ceREEBerus!

ceReeberus is a Python package for working with Reeb graphs, in particular with a view

towards using the interleaving distance in an applied context.

# ceREEBerus
# / ceREEBerus: Reeb Graph Computations in Python View page source

ceREEBerus: Reeb Graph Computations in Python

Ishika Ghosh (MSU) TDV Workshop 2025
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Tutorial: Compute Optimized Upper Bound on Interleaving

@ Two mapper graphs, F and G.

@ Initialize

e interleave = Interleave(F,G)

@ Optimize the loss
e interleave fit()

@ Obtain optimized upper bound
e interleave.n

Ishika Ghosh (M

[2: # Start with two example MapperGraphs
F = ex_ng. interleave_example_A()
G = ex_mg. interleave_example_B()

# Plot the two MapperGraphs

fig, ax = plt.subplots(1, 2, figsize=(10, 5))

F.draw(ax = ax[0])
ax[0].set_title('F')
G.draw(ax = ax[1])
ax[1].set_title('6');

F
14 0 1440
g e
S ,
12 S 1 12 1\ P,
10124 o 1031 1
L -
10 10
8 8
6 6
4 4
2 [ 2

[31: # Interleave the two MapperGraphs

myInt = Interleave(F, G)
myInt.fit()

print(‘The found interleaving bound is d_I(F,G) <='

The found interleaving bound is d_I(F,G) <= 4

DV Workshop 20

, myInt.n)

June 9, 2025

Passing in the two mapper graphs and then fitting will return the best found interleaving value.




Tutorial: Extracting Optimized Interleaving Maps

vertex phi map

g. 08 é:%. 08
{m g
L] 0.6 E L} 06
n 1 L}
@ Optimized interleaving maps phi, psi o b - .
. .
- . L | 02 23 L | 02
@ Stored as labeled block diagonal matrices
@ Visualize the maps e
e interleave.phi(obj_type=‘V’).draw() ! " o
@ Use obj_type=‘E’ for edge maps 5= e s
bt
i os os
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To Summarize

o First available method to compute a bound for the interleaving distance.
@ Code for understanding interleavings on mapper graphs.

@ Mapper as graphs, maps as matrices.

Loss computation as matrix multiplication.

Optimize using integer linear programming.

Experiments to establish the idea.
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Future Work

@ Have more experiments with different datasets.

Improve efficiency of loss optimization.

@ Compare with similar methods.

Focus on how mappers are being generated.

o Can we evaluate mapper parameter selection?

Use in ML pipelines.
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Thank You!

MunchLab, Spring 2025
Coauthors

_ i
email: ghoshis3@msu.edu Find me here: 5

=y
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