Towards an Optimal Bound for the Interleaving Distance on Mapper Graphs

Ishika Ghosh

with Erin Wolf Chambers, Elizabeth Munch, Sarah Percival, Bei Wang

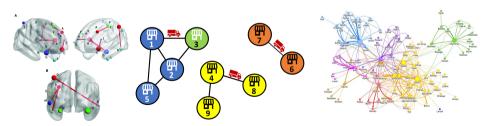
Department of Computational Mathematics, Science and Engineering Michigan State University

Topological Data Visualization Workshop 2025

June 9, 2025

Graphs in the Wild

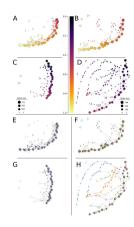
- Graphs with functions show up everywhere.
- We want to cluster and compare them.
- Need a meaningful and computable distance.
- But it's expensive to compute.



Real-world examples: brain activity, traffic flow, and social networks

Key Problem

- Study graph-based topological signatures.
- Focus on Mapper graphs.
- Use interleaving distance.
- Computation is NP-hard.
- Loss function to upper bound.
- How to get the best upper bound?

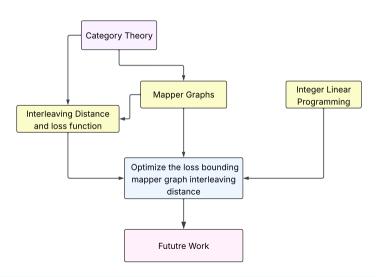


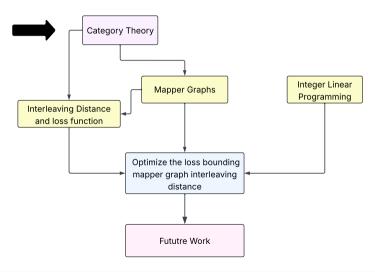
Mapper graphs of leaf data

Image credit: Percival et al., 2024

TL;DR

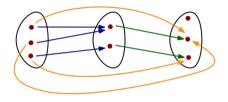
We make Mapper graphs ML-friendly by optimizing a loss that bounds interleaving distance.





Category Theory: Basics

- Study of structure across different areas.
- Relation between structures.
- Two main ingredients:
 - Objects
 - Morphisms
- Rules: composition + identity

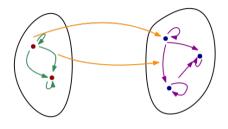


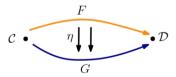
Set: category of sets

Category Theory: Maps Between Categories

- Functors: maps between categories
 - Objects → objects
 - \bullet Morphism \rightarrow morphisms
- Natural transformations: Relates functors
- Natural transformations satisfy:

$$egin{array}{lll} X & F(X) & \stackrel{\eta_X}{\longrightarrow} G(X) \ & & & & & \downarrow G(f) \ Y & F(Y) & \stackrel{\eta_Y}{\longrightarrow} G(Y) \end{array}$$





Functors and natural Transformations

Category Theory: Special Attention

$$F: \mathbf{Open}(\mathcal{U}) \to \mathbf{Set}$$

• **Open**(\mathcal{U}): Category of open sets over \mathcal{U}

ullet Objects: Open subsets of ${\cal U}$

Morphisms: Inclusions

• **Set**: Category of sets

Objects: Sets

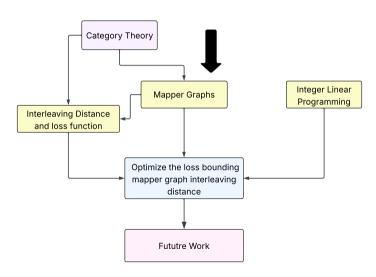
Morphism: Set maps

F maps

open sets to sets

inclusions to extension set maps

Satisfies consistency across overlaps ← cosheaf



Mapper Graphs

- A topological tool to summarize high-dimensional data
- Built using:
 - A lens function (real-valued)
 - A cover on the lens output
 - Clustering within each cover set
- ullet Nodes o clusters, Edges o shared data points
- Captures shape and structure of data.

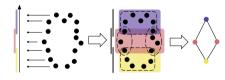


Image credit: Percival et al., 2024

Mapper Graphs: Categorical Framework

Goal: Express mappers as cosheaves.

- Given:
 - Data \mathbb{X} with function $f: \mathbb{X} \to \mathbb{R}$
 - Cover $\mathcal{U} = \{U_{\alpha}\}$ of \mathbb{R}
- Preserves connected components of $f^{-1}(U_{\alpha})$
- ullet Discretize using a grid on ${\mathbb R}$
- Represent f in cosheaf form
- Encoded as functor: $F : \mathbf{Open}(\mathcal{U}) \to \mathbf{Set}$
- Components stored in $\pi_0(f^{-1}(U))$.

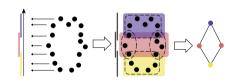
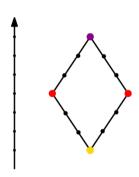


Image credit: Percival et al., 2024

Mapper Graphs: Categorical Framework

Goal: Express mappers as cosheaves.

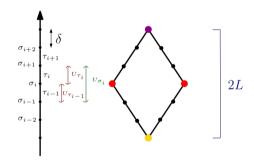
- Given:
 - Data \mathbb{X} with function $f: \mathbb{X} \to \mathbb{R}$
 - Cover $\mathcal{U} = \{U_{\alpha}\}$ of \mathbb{R}
- Preserves connected components of $f^{-1}(U_{\alpha})$
- ullet Discretize using a grid on ${\mathbb R}$
- Represent f in cosheaf form
- Encoded as functor: $F : \mathbf{Open}(\mathcal{U}) \to \mathbf{Set}$
- Components stored in $\pi_0(f^{-1}(U))$.



Mapper Graphs: Categorical Framework

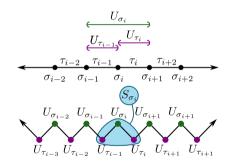
- Mapper bounded in [-L, L].
- Cubical complex K of \mathbb{R} with diameter δ .
- Cover $\mathcal{U} = \{U_{\sigma_i}\} \cup \{U_{\tau}\}.$
 - $U_{\sigma_i} = ((i-1)\delta, (i+1)\delta)$
 - $U_{\tau_i} = (i\delta, (i+1)\delta)$
- ullet Open sets in $S\subseteq \mathcal{U}$ using Alexandrov topology.
 - Basis: $S_{\sigma_i} = \{U_{\tau_i}, U_{\sigma_i}, U_{\tau_{i+1}}\}$ and $S_{\tau_i} = \{U_{\tau_i}\}$
 - Geometrically, $|S_{\sigma}| = U_{\sigma}$ and $|S_{\tau}| = U_{\tau}$.
- Mapper (X, f) is given by

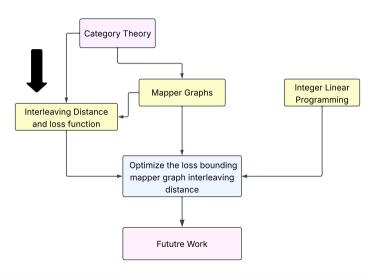
$$F: \ \mathbf{Open}(\mathcal{U}) \ o \ \mathbf{Set} \ S \ \mapsto \ \pi_0(f^{-1}(|S|))$$



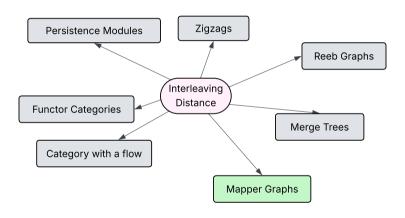
Mapper Graphs: Open Sets

- Cover elements: U_{σ_i} , U_{τ}
- Open sets in Alexandrov topology: S_{σ_i}, S_{τ_i}
- Different, but same geometrically.





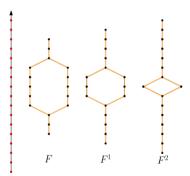
Interleaving Distance in TDA



Distance Between Mappers: Interleaving Distance

Goal: to compare $F, G : \mathbf{Open}(\mathcal{U}) \to \mathbf{Set}$.

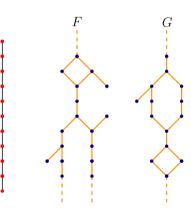
- Define *n*-thickening of open sets.
 - Geometrically, $(i\delta, j\delta) \rightarrow ((i-n)\delta, ((j+n)\delta))$
- Thickening of functor $F^n := F \circ (-)^n$
 - Means, $F^n(S) = F(S^n)$
- *n*-interleaving is $\varphi : F \Rightarrow G^n$ and $\psi : G \Rightarrow F^n$.
- Must satisfy diagram commutativity.



Distance Between Mappers: Interleaving Distance

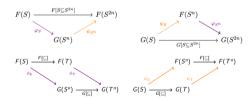
• Diagrams to commute:

- \bullet Smallest n is the interleaving distance.
- NP hard.



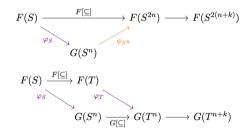
Bounding Interleaving Distance: Assignment

- ullet Assignment (φ, ψ) : Natural transformation like maps without commutativity.
- Find *n* to commute:
 - Triangle: For interleaving
 - Parallelogram: For natural transformation



Bounding Interleaving Distance: Loss Function

• Given n, how much to thicken (k), so that the diagrams commute for n + k?



• Diagram loss $L_{\sum}, L_{\nearrow}, L_{\triangle}, L_{\triangleright}$ is a quality measure.

Bounding Interleaving Distance: Loss Function

• Loss $L(\varphi, \psi)$: Measures how far from commuting.

$$L_{B}(\phi, \psi) = \max_{\substack{\sigma < \tau \in K \\ \rho \in \mathcal{K}}} \left\{ L_{\square}^{S_{\tau}, S_{\sigma}}, L_{\square}^{S_{\tau}, S_{\sigma}}, L_{\square}^{S_{\rho}, S_{\rho}^{n}}, L_{\square}^{S_{\rho}, S_{\rho}^{n}}, L_{\triangle}^{S_{\rho}}, L_{\bigtriangledown}^{S_{\rho}} \right\}$$

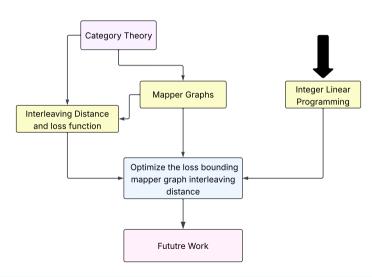
- Only on basis elements $L_B(\varphi, \psi)$.
- Computation is polynomial.

Theorem (Chambers et al. (2023))

For an n-assignment, $\varphi: F \Rightarrow G^n$ and $\psi: G \Rightarrow F^n$,

$$d_I(F,G) \leq n + L_B(\varphi,\psi).$$

Ishika Ghosh (MSU) TDV Workshop 2025 June 9, 2025 18 / 43



Integer Linear Programming

- Linear Programming (LP): optimize a linear function under linear constraints.
 - Objective function
 - Constraints
- Integer Linear Programming (ILP): same as LP, but variables must be integers.
- Used in scheduling, logistics, networks, etc.
- ILPs are harder to solve than LPs (NP-hard).
- General formulation:

$$\label{eq:maximize} \begin{array}{ll} \mathsf{Maximize} & \mathbf{c}^T\mathbf{x} \\ \mathsf{Subject to} & A\mathbf{x} \leq \mathbf{b} \\ & x_j \geq 0 \quad \forall j \in \{1, \cdots, n\} \end{array}$$

Integer Linear Programming

- Efficient implementation exists
- Python Library: PuLP
- Solver: CBC, Gurobi, CPLEX

Goal: Use ILP to optimize the loss

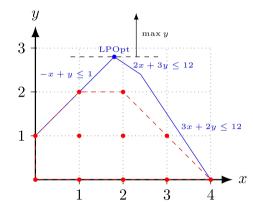
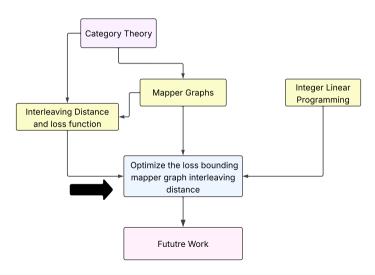


Image credits: Wikimedia commons



Objective

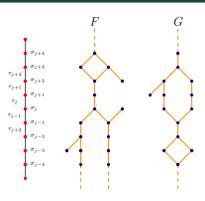
Can we optimize the loss function to get a better bound on the interleaving distance between two mapper graphs?

Preliminaries:

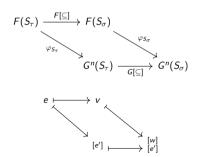
- Start with two mappers $F, G : \mathbf{Open}(\mathcal{U}) \to \mathbf{Set}$.
- Both mappers are in B = [-L, L].
- Vertex at every integer function value.
- Only one connected component each.

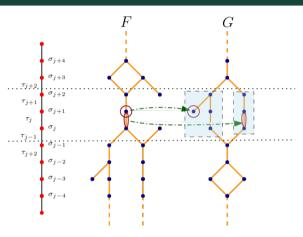
Data Structure: Mapper as Graphs

- Store $F : \mathbf{Open}(\mathcal{U}) \to \mathbf{Set}$ as graph $F \sim (V_F, E_F)$.
- Use grid structure on \mathbb{R} .
- Generate vertex for $F(S_{\sigma_i})$ and edge for $F(S_{\tau_i})$.
- $V_F = \coprod_{i=1}^B F(S_{\sigma_i})$ and $E_F = \coprod_{i=1}^{B-1} F(S_{\tau_i})$.
- Vertices: stored with height.
- Assignment: vertex and edge maps.
- ullet Diagram commutes \sim same connected component.

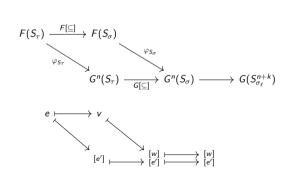


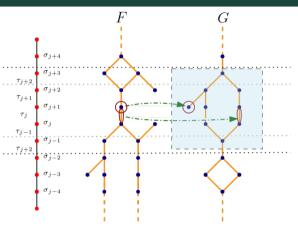
Commutativity and Connected Components





Commutativity and Connected Components

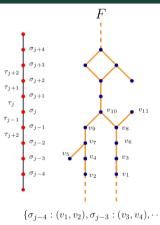




Data Structure: Maps as Matrices

Goal: Express diagram commutativity as matrix multiplication.

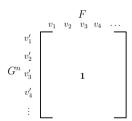
- Order vertices by increasing function values.
- Same for edges (lower vertex).
- Assignment: vertex and edge maps.
- Matrix whose rows and columns are these.
- Block Structure.

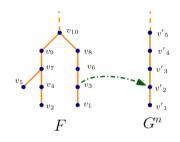


$$\{\sigma_{j-4}: (v_1, v_2), \sigma_{j-3}: (v_3, v_4), \cdots\}$$

Assignment Matrices

- Store maps like $\varphi: F \to G^n$.
- Place 1 if $\varphi(v) = v'$, 0 otherwise.
- For a valid map: only one 1 for each column.

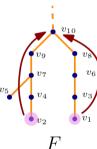




• To have lower loss, need better assignment.

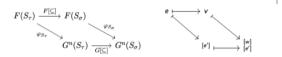
Other Matrices

- Distance Matrix:
 - How close are same-height vertices or edges to being connected?
 - Entries are positive integers.
- Boundary matrix: edge-vertex connection.
 - Up and down.
 - Binary
- Inclusion matrix: for $F \Rightarrow F^n$.
 - Binary.



Loss Terms as Matrix Multiplication

• Diagram:



- Top-right: $M_{\phi}^{V} \cdot B_{F}^{\downarrow}$
- Left-Down: $B_{G^n}^{\downarrow} \cdot M_{\phi}^{E}$
- In matrix terms:

$$\max_{i} L_{\square}^{\mathcal{S}_{\tau_{i}},\mathcal{S}_{\sigma_{i}}} = \max \left\{ x \mid x \in D_{G^{n}}^{V} \left(\mathbf{M}_{\phi}^{V} \cdot B_{F}^{\downarrow} - B_{G^{n}}^{\downarrow} \cdot \mathbf{M}_{\phi}^{E} \right) \right\}$$

ullet computing loss o finding largest matrix element.

	Loss Term	Diagram	Matrix Multiplication	Eval.
Edge-vertex Parallelogram	$L^{S_{ au},S_{\sigma}}_{ riangle}$	$F(S_{\tau}) \xrightarrow{\varphi_{S_{\tau}}} F(S_{\sigma}) \xrightarrow{\varphi_{S_{\sigma}}} G^{n}(S_{\tau}) \xrightarrow{\varphi_{G_{\sigma}}} G^{n}(S_{\sigma})$	$D_{G^n}^V \left(egin{aligned} M_{arphi}^V \cdot B_F^{\dagger} - B_{G^n}^{\dagger} \cdot oldsymbol{M}_{arphi}^E \ D_{G^n}^V \left(oldsymbol{M}_{arphi}^V \cdot B_F^{\downarrow} - B_{G^n}^{\downarrow} \cdot oldsymbol{M}_{arphi}^E \ \end{aligned} ight)$	$\max_{x_{ij} \in A} x_{ij}$
	$L^{S_{ au},S_{\sigma}}_{arnothing}$	$F^n(S_\tau) \xrightarrow{F(\mathbb{G})} F^n(S_\sigma)$ $G(S_\tau) \xrightarrow{\psi_{S_\sigma}} G(S_\sigma)$	$D_{F^n}^V \left(\begin{matrix} M_{\psi}^V \cdot B_G^{\uparrow} - B_{F^n}^{\uparrow} \cdot M_{\psi}^E \\ D_{F^n}^V \left(M_{\psi}^V \cdot B_G^{\downarrow} - B_{F^n}^{\downarrow} \cdot M_{\psi}^E \right) \end{matrix} \right)$	
Thickening Parallelogram	$L^{S_ ho,S^n_ ho}_{ riangle}$	$F(S_{\rho}) \xrightarrow{F[\subseteq]} F^{n}(S_{\rho}) \xrightarrow{\varphi_{S_{\rho}^{n}}} G^{2n}(S_{\rho})$	$D_{G^n}^V\left(\frac{\mathbf{M}_{\varphi^n}^V \cdot I_F^V - I_{G^n}^V \cdot \mathbf{M}_{\varphi}^V}{D_{G^n}^E\left(\mathbf{M}_{\varphi^n}^E \cdot I_F^E - I_{G^n}^E \cdot \mathbf{M}_{\varphi}^E\right)}$	
	$L^{S_ ho,S^n_ ho}_{arnothing}$	$F^{n}(S_{\rho}) \xrightarrow{F[\subseteq]} F^{2n}(S_{\rho})$ $G(S_{\rho}) \xrightarrow{G[\subseteq]} G(S_{\rho}^{n})$	$D_{F^n}^V \left(\begin{matrix} M_{\psi^n}^V \cdot I_G^V - I_{F^n}^V \cdot M_{\psi}^V \\ D_{F^n}^E \left(M_{\psi^n}^E \cdot I_G^E - I_{F^n}^E \cdot M_{\psi}^E \right) \end{matrix} \right)$	
Triangle	$L_{igtriangledown}^{S_{ ho}}$	$F(S_{\rho}) \xrightarrow{F[\subseteq]} F^{2n}(S_{\rho})$ $G^{n}(S_{\rho})$	$D_{F^{2n}}^{V}\left(I_{F^{n}}^{V}\cdot I_{F}^{V}-M_{\psi^{n}}^{V}\cdot M_{\varphi}^{V}\right)$ $D_{F^{2n}}^{E}\left(I_{F^{n}}^{E}\cdot I_{F}^{E}-M_{\psi^{n}}^{E}\cdot M_{\varphi}^{E}\right)$	$\max_{x_{ij} \in A} \left\lceil rac{x_{ij}}{2} ight ceil$
	$L^{S_{ ho}}_{ riangle}$	$G(S_{\rho}) \xrightarrow{\psi_{S_{\rho}}} f^{rn}(S_{\rho}) \xrightarrow{\varphi_{S_{\rho}^{n}}} G^{2n}(S_{\rho})$	$D_{G^{2n}}^{V} \left(I_{E^{n}}^{V} \cdot I_{G}^{V} - M_{\varphi^{n}}^{V} \cdot M_{\psi}^{V} \right) \\ D_{G^{2n}}^{E} \left(I_{G^{n}}^{E} \cdot I_{G}^{E} - M_{\varphi^{n}}^{E} \cdot M_{\psi}^{E} \right)$	

Implement Loss Optimization

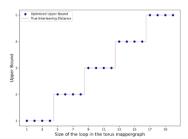
- Question: Can we formulate loss optimization as a linear program?
 - Yes! Both the objective function and constraints can be linearized.
- Discretized setup calls for integer linear programming.
- ILP is formulated as follows:

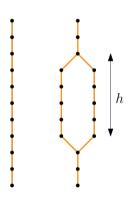
$$\label{eq:subject_to_problem} \begin{split} & \text{Minimize} \quad \ell \\ & \text{Subject to} \quad \ell \geq x_{ij}^{F,\uparrow} \quad \forall \, x_{ij}^{F,\uparrow} \in D_{G^n}^V \left(\textit{M}_{\varphi}^{V} \cdot \textit{B}_{\textit{F}}^{\uparrow} - \textit{B}_{G^n}^{\uparrow} \cdot \textit{M}_{\varphi}^{\textit{E}} \right) \\ & \qquad \qquad \sum_{i} x_{ij}^{\eta,A} = 1 \quad \forall x_{ij}^{\eta,A} \in \textit{M}_{\eta}^{A}, \, \eta \in \{\phi,\phi^n,\psi,\psi^n\}, \, \textit{A} \in \{\textit{V},\textit{E}\} \\ & \qquad \qquad x_{ij} \geq 0 \\ & \qquad \qquad \vdots \quad \text{(more constraints)} \end{split}$$

• Nonlinearity in triangles (e.g., $M_{\psi^n}^V \cdot M_{\varphi}^V$) is linearized with additional variables.

Experiments with Small Mappers

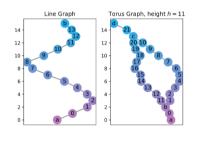
- Small mappers where interleaving distance can be computed.
- Line mapper: One vertex at every height.
- Torus mapper: A loop in the middle.
- Interleaving distance is $\lceil \frac{h}{4} \rceil$.

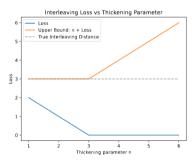




Experiments with Small Mappers

• Interleaving can be achieved for n=1

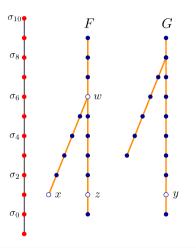


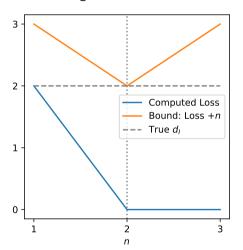


• Interleaving: h = 11, $\lceil \frac{h}{4} \rceil = 3$.

Optimization with n = 1 is not Enough

• Found mappers where upper bound goes down for higher *n*.

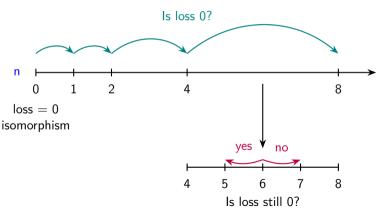




Ishika Ghosh (MSU) TDV Workshop 2025 June 9, 2025 32 / 43

Search for Optimum *n*

- n = 1 does not always give best upper bound (n + loss).
- Combination of binary and exponential search for $n \in (0, 1, \dots, 2L)$.



Ishika Ghosh (MSU) TDV Workshop 2025 June 9, 2025 33 / 43

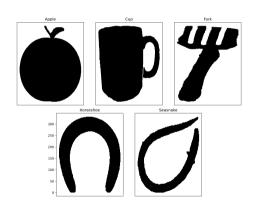
Experiments with Images

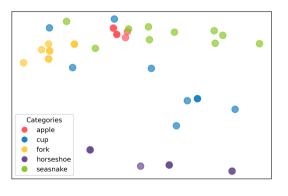
- MPEG7 image dataset.
- Compute mappers on different objects.
- Y-coordinates as lens function.
- Compare using optimized loss.



Experiments with Images

- Pairwise distance with the optimized mapper loss
- MDS to preserve pairwise dissimilarities

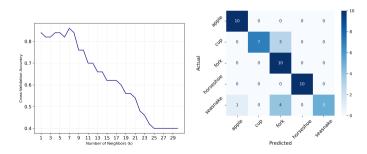




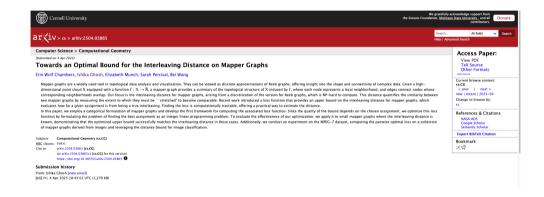
Ishika Ghosh (MSU) TDV Workshop 2025 June 9, 2025 35 / 43

Experiments with Images

- KNN classification with K=7.
- Accuracy achieved 84%.
- Caveat: Highly dependent on the mapper parameters.

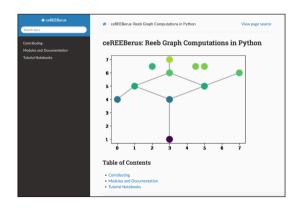


Pre-print Available Now



Open-Source Shoutout: ceREEBerus!

ceReeberus is a Python package for working with Reeb graphs, in particular with a view towards using the interleaving distance in an applied context.



Find it here:

Tutorial: Compute Optimized Upper Bound on Interleaving

- Two mapper graphs, F and G.
- Initialize
 - interleave = Interleave(F,G)
- Optimize the loss
 - interleave.fit()
- Obtain optimized upper bound
 - interleave.n

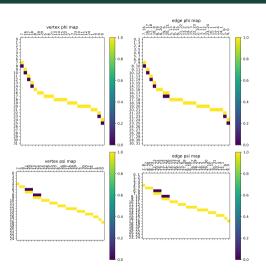
```
[2]: # Start with two example MapperGraphs
    F = ex_mg.interleave_example_A()
    G = ex mg.interleave example B()
    # Plot the two MapperGraphs
    fig. ax = plt.subplots(1, 2, figsize=(10, 5))
    F.draw(ax = ax[0])
    ax[0].set title('F')
    G.draw(ax = ax[1])
    ax[1].set title('G'):
                                                                          G
```

Passing in the two mapper graphs and then fitting will return the best found interleaving value.

```
[3]: # Interleave the two MapperGraphs
myInt = Interleave(F, G)
myInt.fit()
print('The found interleaving bound is d_I(F,G) <=', myInt.n)
The found interleaving bound is d_I(F,G) <= 4</pre>
```

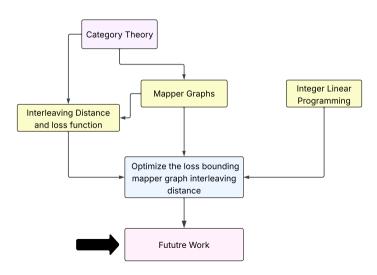
Tutorial: Extracting Optimized Interleaving Maps

- Optimized interleaving maps phi, psi
- Stored as labeled block diagonal matrices
- Visualize the maps
 - interleave.phi(obj_type='V').draw()
 - Use obj_type='E' for edge maps



To Summarize

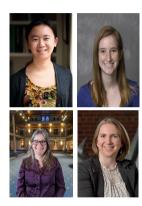
- First available method to compute a bound for the interleaving distance.
- Code for understanding interleavings on mapper graphs.
- Mapper as graphs, maps as matrices.
- Loss computation as matrix multiplication.
- Optimize using integer linear programming.
- Experiments to establish the idea.



Future Work

- Have more experiments with different datasets.
- Improve efficiency of loss optimization.
- Compare with similar methods.
- Focus on how mappers are being generated.
- Can we evaluate mapper parameter selection?
- Use in ML pipelines.

Thank You!



Coauthors

MunchLab, Spring 2025

email: ghoshis3@msu.edu

Find me here:

Chambers, E. W., Munch, E., Percival, S., and Wang, B. (2023). Bounding the interleaving distance for geometric graphs with a loss function. *arXiv* preprint *arXiv*:2307.15130.