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Abstract. We show that a large class of i.c.c., countable, discrete groups satisfying a weak
negative curvature condition are not inner amenable. By recent work of Hull and Osin
[Groups with hyperbolically embedded subgroups. Algebr. Geom. Topol. 13 (2013),
2635–2665], our result recovers that mapping class groups and Out(Fn) are not inner
amenable. We also show that the group-measure space constructions associated to free,
strongly ergodic p.m.p. actions of such groups do not have property Gamma of Murray
and von Neumann [On rings of operators IV. Ann. of Math. (2) 44 (1943), 716–808].
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1. Introduction
The study of central sequences has occupied a prominent place in the classification of
II1 factors. In their seminal investigations Murray and von Neumann [23] defined a II1

factor M to have property Gamma if there exists a net of unitaries (un) in M with
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2 I. Chifan et al

τ(un)≡ 0 and such that ‖xun − un x‖2→ 0, for all x ∈ M . In particular, they showed that
the free group factor L(F2) does not have property Gamma (therefore, not hyperfinite),
providing the first demonstration of non-isomorphic II1 factors. The study of property
Gamma subsequently played an important role in the celebrated classification results of
McDuff [19] and Connes [7].

In the 1970s Effros [9] introduced an analog of property Gamma for discrete groups,
which he termed inner amenability. A group 0 is called inner amenable if there exists
a finite additive measure µ on the subsets 0\{e} of total mass one such that µ(X)=
µ(γ−1 Xγ ) for all X ⊂ 0\{e}. Equivalently, 0 is inner amenable if there exists a net
ξn ∈ `

2(0\{e}) of unit-norm vectors such that ‖uγ ξn − ξnuγ ‖2→ 0 for all γ ∈ 0. A trivial
consequence of [7, Theorem 2.1] is that, for i.c.c. discrete groups (that is, for discrete
groups for which every non-identity conjugacy class is infinite), inner amenability is a
weaker property than the group von Neumann algebra having property Gamma. However,
examples of inner amenable groups whose von Neumann algebras do not possess property
Gamma have only been recently constructed by Vaes [45].

For II1 factors without property Gamma, strong classification results have become
achievable in a large part through the development of Popa’s deformation/rigidity
theory [34–36]. As the theory developed, it was readily noticed that fairly mild
‘deformability’ and ‘rigidity’ assumptions could be used to demonstrate the absence of
property Gamma, cf. [5, 15, 27, 30, 31, 36]. In parallel, it was noticed that modest
‘negative curvature’ assumptions on a discrete group could be used to show non-inner
amenability [8, 13]. The goal of this paper is to fully develop the connections between
these results through deriving non-inner amenability of large classes of countable, discrete
groups through operator algebraic methods, specifically the theory of ‘weak’ deformations
developed in [5, 6, 41].

1.1. Statement of results. This paper is a continuation in the series of papers [5, 6]
exploring the consequences of negative-curvature phenomena in geometric group theory
for the structure of group and group-measure space factors. The first in the series [5] dealt
with structural results in the context of the strongest type of negative curvature condition,
namely Gromov hyperbolicity. The essential result obtained therein was the extension
of the strong solidity results of Ozawa and Popa [29, 30] and of the second author [41]
from lattices in rank-one semisimple Lie groups to Gromov hyperbolic groups in general.
In the second paper in the series [6], this result was further refined in two ways: first,
to cover all weakly amenable groups satisfying a weaker negative curvature condition,
relative hyperbolicity; and second, to cover products of such groups. The starting point
of all of these results is the conversion of the negative curvature condition into a natural
cohomological-type condition (relative QHreg/bi-exactness) which is used to construct a
weak deformation of the von Neumann algebra to which generalized ‘spectral gap rigidity’
arguments of the type developed by Popa [36] and Ozawa and Popa [29, 30] are applied to
obtain the desired classification results. The results of [5, 6] were subsequently extended
to general crossed product factors of hyperbolic groups in [39].

Recent progress in geometric group theory has been on obtaining structural results
for groups satisfying the much weaker negative curvature condition of ‘acylindrical
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hyperbolicity,’ cf. [26], or various equivalent geometric properties such as the condition of
admitting a hyperbolic, WPD element, cf. [3], admitting a proper, infinite hyperbolically
embedded subgroup [8], and weak acylindricity [12], among others. In particular, it was
shown by Dahmani et al [8], that any group satisfying one of these conditions is not inner
amenable. In parallel with these advances in geometric group theory, we introduce a
cohomological-type version of weak negative curvature which we will use to classify the
structure of central sequences for the group von Neumann algebra and the related group-
measure space constructions.

Notation 1.1. Let 0 be a countable discrete group, and let G be a family of subgroups
of 0. In order to simplify the statements of the results, throughout the paper we will use
the notation set forth here. We will say that 0 satisfies the condition NC relative to the
family G (abbreviated NC(G)) if 0 satisfies one of the following statements:
• 0 admits an unbounded quasi-cocycle into a non-amenable orthogonal representation

which is mixing with respect to G;
• 0 admits a symmetric array into a non-amenable orthogonal representation so that

the array is proper with respect to G.
The group 0 satisfies condition NC if it satisfies condition NC relative to the family
consisting of the trivial subgroup.

The condition NC is satisfied for all groups in the class Dreg of Thom [43], in particular
all acylindrically hyperbolic groups, as well as the class QH of the first two authors [5].
As we point out below, the class NC also contains all groups with positive first `2-Betti
number, which as a class were not previously known to be non-inner amenable. We refer
the reader to §2 below for relevant terminology and examples.

In this paper we obtain a complete classification of the asymptotic central sequences
of arbitrary crossed products factors M = A o 0 associated with groups 0 satisfying
condition NC(G). In more colloquial terms, we will be showing that all sequences which
asymptotically commute with the entire factor M must asymptotically ‘live’ close to the
(canonical) von Neumann subalgebras of M arising from the subgroups of G. Basic
examples can be constructed to show that this control is actually sharp. In particular,
this result provides large natural classes of examples of i.c.c. groups whose factors do not
possess property Gamma of Murray and von Neumann. We now state the results.

THEOREM A. Let 0 be a countable discrete group together with a family of subgroups G.
Let 0y A be any trace preserving action on a finite von Neumann algebra and denote
M = A o 0. Also assume that ω is a free ultrafilter on the positive integers N.

If 0 satisfies condition NC(G), then for any sequence (xn)n ∈ M ′ ∩ Mω there exists a
finite subset F ⊆ G such that (xn)n ∈ ∨6∈F (A o6)ω ∨ M.

COROLLARY B. If0 is an i.c.c., countable, discrete group which admits a non-degenerate,
hyperbolically embedded subgroup, then L0 does not have property Gamma. If 0y
(X, µ) is any strongly ergodic probability measure preserving (p.m.p.) action, then the
group-measure space factor L∞(X)o 0 does not have property Gamma. In particular,
this applies to non-virtually abelian mapping class groups MCG(6) for 6 a (punctured)
closed, orientable surface as well as Out(Fn), n ≥ 3.
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For i.c.c. groups, the result may be sharpened to further rule out inner amenability. We
mention in passing that while this result is group theoretical in nature, the proof is operator
algebraic, rooted in Popa’s deformation/rigidity theory.

THEOREM C. Let 0 be an i.c.c. group together with a family of subgroups G. Assume that
0 is i.c.c. over every subgroup 6 ∈ G (cf. Definition 4.3). If 0 satisfies condition NC(G),
then 0 is not inner amenable.

Since a non-amenable group is known to have positive first `2-Betti number if and only
if it admits an unbounded 1-cocycle into its left-regular representation [33, Corollary 2.4],
we have the following easy corollary. Surprisingly, to the best of our knowledge this is the
first time this result has appeared in print, though we were informed by Taka Ozawa that
he had previously obtained this result in unpublished work.

COROLLARY D. If 0 is an i.c.c. countable discrete group with positive first `2-Betti
number, then 0 is not inner amenable.

When combined with the main result of Hull and Osin from [16] our theorem also
recovers the following earlier result due to Dahmani et al.

COROLLARY E. (Dahmani et al [8]) If 0 is an i.c.c., countable, discrete group which
admits a non-degenerate, hyperbolically embedded subgroup, then 0 is not inner
amenable.

Additionally, for such groups the authors were also able to demonstrate in [8] simplicity
of the reduced C∗-algebra C∗r (0). We were not able to obtain any positive results for the
more general class of groups satisfying condition NC, though we remark on some possible
connections between the results outlined here and C∗-simplicity in §5.2.

Recall, a II1 factor is said to be prime if it is not isomorphic to a tensor product of
diffuse factors.

QUESTION 1.2. If 0 is an exact, non-amenable, i.c.c., countable, discrete group which
admits an unbounded quasi-cocycle into `2(0)⊕∞, is L0 prime?

Note that Peterson showed [31, Corollary 4.6] that primeness of L0 does follow from
the much more restrictive assumption that 0 admits an unbounded 1-cocycle into `2(0)⊕∞

(the assumption of exactness is not necessary). Primeness is also known when the quasi-
cocycle is proper, even extending to the case of proper arrays, by [5, Theorem A], though
this is implicitly due to Ozawa ([27, Theorem 1] via [5, Remark 1.10]). An affirmative
answer to the question would be sharp: by [5, Proposition 1.4] the group F2 × F2, for
instance, admits an unbounded (but not proper) array into its left-regular representation.

1.2. Outline of the paper. The next section contains the necessary background material,
definitions, and examples. The third section consists of the statement and proofs of the
main new technical results on quasi-cocycles. The proofs of the main results stated above,
as well as other applications of the technique, form the fourth and last section of the paper.
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2. Background and methods
2.1. Arrays and quasi-cocycles. Arrays were introduced by the first two authors in [5]
as a language for unifying the concepts of length functions and 1-cocycles into orthogonal
representations. In practice arrays can be used either to strengthen the concept of a length
function by introducing a representation or to introduce some geometric flexibility to the
concept of a 1-cocycle. See [5, §1] for an in-depth discussion of this concept and its
relation with the phenomenon of negative curvature in geometric group theory.

Definition 2.1. Assume that 0 is a countable, discrete group together with G = {6i :

i ∈ I }, a family of subgroups of 0, and π : 0→O(H), an orthogonal representation.
Following [5, Definition 1.4], we say that the group 0 admits an array into H if there
exists a map r : 0→H which satisfies the following bounded equivariance condition:

sup
δ∈0

‖r(γ δ)− πγ (r(δ))‖ = C(γ ) <∞ for all γ ∈ 0.

An array r is said to be symmetric {anti-symmetric} if we have that

πγ (r(γ−1))= r(γ ) {πγ (r(γ−1))=−r(γ )}

for all γ ∈ 0. It is proper relative to G if for every C > 0 there are finite subsets F ⊂ G
and K ⊂ G such that

BC := {γ ∈ 0 : ‖r(γ )‖ ≤ C} ⊂
⋃

K∈K
F K F.

For a detailed list of properties of groups that admit non-trivial arrays the reader may
consult [5, 6].

The main examples of arrays on groups are quasi-cocycles. As before let 0 be
a countable group together with G = {6i : i ∈ I } a family of subgroups of 0 and let
π : 0→O(H) be an orthogonal representation.

Definition 2.2. A map q : 0→H is called a quasi-cocycle if there exists a constant D ≥ 0
such that

‖q(γ λ)− πγ (q(λ))− q(γ )‖ ≤ D for all γ, λ ∈ 0. (2.1)

The infimum over all such D is denoted by D(q) and is called the defect of q. When the
defect is zero q is actually a 1-cocycle with coefficients in π (i.e. an element in Z1(0, π)).
Any bounded map b : 0→H is automatically a quasi-cocycle whose error does not exceed
three times the uniform bound of b.

It was observed by Thom [43] that any quasi-cocycle lies within bounded distance from
an anti-symmetric one. We denote the space of anti-symmetric quasi-cocycles associated
to the representation π as Q Z1

as(0, π) and the subspace of those which are bounded as
Q B1

as(0, π). The first quasi-cohomology space is then defined to be Q H1
as(0, π) :=

Q Z1
as(0, π)/Q B1

as(0, π). In particular, if π is the left-regular representation λ0 , then
Q H1

as(0, λ0) has the structure of a right L0-module.

Definition 2.3. A group 0 is said to be in the class Dreg if dimL0 Q H1
as(0, λ0) 6= 0.

By [43, Lemma 2.8] and [33, Corollary 2.4] it is observed that a countable, discrete
group 0 is in the class Dreg if and only if it admits an unbounded quasi-cocycle into its
left-regular representation.
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2.2. Groups satisfying condition NC. We will now describe some specific examples
and constructions of classes of groups satisfying condition NC with respect to some
explicit families of subgroups. While all groups which are (relatively) bi-exact belong
to this class, stronger results, cf. [4–6, 28], are known in this case, so we will focus our
attention here on weaker ‘negative curvature’ conditions which can be used to construct
unbounded quasi-cocycles. Before doing so, in order to make the exposition more
self-contained and to furnish some familiar examples, we will recall how to construct
quasi-cocycles algebraically for classes of groups arising from canonical constructions like
semi-direct products, amalgamated free products, and HNN-extensions. For more details
we refer to [6, §2.2].

Examples 2.4. Each group in the following classes satisfies condition NC with respect to
the associated family of subgroups G.
(a) For 6 < 01, 02 groups, denote by 0 := 01 ?6 02 the corresponding amalgamated

free product and assume that 6 is not co-amenable in 0. Then it is well known that
H1(0, `2(0/6)) 6= {0} and we consider G := {6}.

(b) For 6 < 0 groups and θ :6→ 0 a monomorphism, denote by 0 := HNN(0, 6, θ)
the corresponding HNN-extension and assume that 6 is not co-amenable in 0. Then
again we have H1(0, `2(0/6)) 6= {0} and we let G := {6}.

(c) Let 0 be a non-amenable group that acts on a tree T = (V, E) and for each edge
e ∈ E denote by 0e := {γ ∈ 0 : γ e = e} its stabilizer group. Since 0 acts on a
tree, there exists a 1-cocycle into the semi-regular orthogonal representation λE :=⊕

e∈E `
2(0/0e) where the group acts by left translation on each summand. If we

assume the trivial representation 10 is not weakly contained in λE (e.g. when all 0e

are amenable) then it is clear that λE is non-amenable and mixing with respect to the
family G := {0e : e ∈ E}.

PROPOSITION 2.5. Let H, 0 be non-trivial countably discrete groups, let I be an infinite
0-set, and consider the generalized wreath product group H oI 0 := H (I ) oσ 0; here we
have denoted H (I )

:=
⊕

I H and by σ the natural shift action of 0 on H (I ) induced by
the action of 0 on I . For every K ⊂ I , denote by 0K := {γ ∈ 0 : γ K = K } the stabilizing
group of the subset K and let G := {H (I ) oσ 0i : i ∈ I }. If H is non-amenable then
H oI 0 satisfies condition NC(G). Also, if H is amenable, 0 is non-amenable, and all
the stabilizers 0i are amenable for all i ∈ I then again H oI 0 satisfies condition NC(G).

Proof. Consider the canonical orthogonal representation π : H (I )
→O(⊕I `

2(H)), and
let π ′ : 0→O(

⊕
I `

2(H)) be defined as π ′γ (
⊕

i ξi )=
⊕

i ξγ−1i for all γ ∈ 0. One can
check that π ′ is also an orthogonal representation satisfying π ′γ ◦ πh ◦ π

′

γ−1 = πσγ (h) for

all h ∈ H (I ), γ ∈ 0. Hence π̃ : H oI 0→O(
⊕

I `
2(H)) defined by π̃hγ = πh ◦ π

′
γ for

all h ∈ H (I ) and γ ∈ 0, is also an orthogonal representation which extends π and π ′,
respectively.

We observe that the map c : H (I )
→
⊕

I `
2(H) given by c(h)= c((hi )i )=

⊕
i (δe −

δhi ) defines a 1-cocycle which satisfies the following compatibility relation: c(σγ (h))=
π̃γ (c(h)) for all h ∈ H (I ) and γ ∈ 0. This enables one to define a 1-cocycle c̃ : H oI
0→

⊕
I `

2(H) by letting c̃(hγ )= c(h) for all h ∈ H (I ) and γ ∈ 0. A straightforward

http://journals.cambridge.org
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calculation shows that ‖c̃(hγ )‖2 = 2#(supp(h)) for all h ∈ H (I ) and γ ∈ 0, where
supp(h)⊂ I denotes the support of h. Since I is infinite it follows that c̃ is unbounded;
hence, H1(H oI 0,

⊕
I `

2(H)) 6= 0. Notice that when H is non-amenable we have that
π is non-amenable, whence π̃ is non-amenable without any additional assumption on
0. When H is amenable a basic calculation shows that π ′ is unitarily equivalent to⊕

F `
2(0/0F ), where the direct sum is over some finite subsets F ⊂ I . Notice that

0F =
⋂

some j∈F 0O j where O j are the (finite) orbits of the natural action of G F on F .
Moreover, for every such j there exists i j ∈ I such that 0i j < 0O j is a subgroup of index
#(O j ). This further implies that π ′ is weakly contained in

⊕
S⊂I, finite `

2(0/(
⋂

i∈S 0i ));
here the direct sum is over all finite subsets of I . Hence, if we assume that the trivial
representation 10 is not weakly contained in

⊕
S⊂I, finite `

2(0/(
⋂

i∈S 0i )) (e.g. when 0 is
non-amenable and all stabilizers 0i are amenable) then we conclude that π ′, whence π̃ , is
non-amenable.

Finally, we briefly check that π̃ is mixing with respect to G. For this fix ε > 0
and ξ, η ∈

⊕
I `

2(H). We can assume without any loss of generality that the supports
supp(ξ)= F1, supp(η)= F2 are finite subsets of I . Using the definitions notice that there
exist finite subsets K ⊂ 0, L ⊂ I such that {γ ∈ 0 : γ F1 ∩ F2 6= ∅} ⊆ K (

⋃
i∈L 0i )K .

Thus, for every hγ ∈ H oI 0\K (
⋃

i∈L H (I ) oσ 0i )K we have that

〈π̃hg(ξ), η〉 = 〈π̃g(ξ), πh−1(η)〉 =
∑

i

〈ξγ−1i , πh−1
i
(ηi )〉

=

∑
i∈F2∩γ F1

〈ξγ−1i , πh−1
i
(ηi )〉 = 0< ε,

as desired. �

Another class of examples comes from lattices in locally compact, second countable
(l.c.s.c.) groups.

Example 2.6. Consider a l.c.s.c. group G = G1 × G2, where G1 has property (HH) of
Ozawa and Popa [30], i.e. G1 admits a proper cocycle into a non-amenable, mixing
orthogonal representation. If 0 < G is a lattice then 0 satisfies condition NC(K) for
K the set of subgroups K < 0 such that the projection pr1(K ) of K into G1 is pre-
compact. (Note that the lattice assumption is only necessary to ensure non-amenability
of the restricted representation.)

We will now describe some recent, innovative methods for building quasi-cocycles
through the use of geometric methods in group theory. Some of the first results in this
direction come from the seminal work of Mineyev [20] and Mineyev et al [21], who
showed that if 0 is a Gromov hyperbolic group, then 0 admits a proper quasi-cocycle
into a finite multiple of its left-regular representation, whence 0 belongs to Dreg. This
was generalized to groups which are relatively hyperbolic to a family of subgroups by
Mineyev and Yaman [22]. Hamenstädt [12] showed that all weakly acylindrical groups—
in particular, non-virtually abelian mapping class groups and Out(Fn), n ≥ 2—belong to
the class Dreg. A unified approach to these results was recently developed by Hull and
Osin [16] and independently by Bestvina et al [3]. Specifically, they were able to show
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that every group 0 which admits a non-degenerate, hyperbolically embedded subgroup
belongs to the class Dreg via an extension theorem for quasi-cohomology. In fact, by very
recent work of Osin [26] the weak curvature conditions used in both papers, as well as
Hamenstädt’s weak acylindricity condition, are all equivalent to the notion of ‘acylindrical
hyperbolicity’ formulated by Bowditch, cf. [26].

Examples 2.7. Collecting these results together, the following families of groups are
known to be acylindrically hyperbolic. In particular they belong to the class Dreg, thus
satisfy condition NC:
(a) Gromov hyperbolic groups [20, 21];
(b) groups which are hyperbolic relative to a family of subgroups as in [22];
(c) the mapping class group MCG(6) for any (punctured) closed, orientable surface 6,

provided that it is not virtually abelian [12];
(d) Out(Fn), n ≥ 2 [12];
(e) groups which admit a proper isometric action on a proper CAT(0) space [42].

We remark that it is unclear whether condition NC is closed under finite direct sums,
though the following partial stability result is easily observed; see [5, Proposition 1.7].

PROPOSITION 2.8. Let 01 and 02 be countable, discrete groups, and let G1 and G2 be
respective families of subgroups. Consider the direct product 0 = 01 × 02 equipped
with the family of subgroups G := {61 × 02 :61 ∈ G1} ∪ {01 ×62 :62 ∈ G2}. If both
01 and 02 either admit a symmetric array into a non-amenable representation which
is proper with respect to Gi or admit an unbounded quasi-cocycle into a non-amenable
representation which is mixing with respect to Gi , i = 1, 2, then the same holds for 0 with
respect to G.

On the other hand, it is known that the classes of non-Gamma factors and non-
inner amenable groups are closed under, respectively, finite tensor products (a non-trivial
result of Connes [7]) and finite direct sums Bekka [2, Theorem 2.4]. Precisely, 0 is
not inner amenable if and only if the orthogonal representation induced by action of 0
by conjugation on `2(0\{e}) is non-amenable. This suggests that the condition NC as
formulated may not be an optimal condition for establishing results along the lines of
those stated in the introduction.

2.3. A family of deformations arising from arrays. We briefly recall from [5] the
construction of a deformation from an array based on the main construction in [41]. To
do this we need to first recall the construction of the Gaussian action associated to a
representation (see for example [32]). Let π : 0→O(H) be an orthogonal representation
on a real Hilbert space. Then there exists a standard probability space (Xπ , µ) so
that the abelian von Neumann algebra L∞(Xπ , µ) is generated by a family of unitaries
ω(ξ), ξ ∈H, subject to the following relations:
(1) ω(ξ1)ω(ξ2)= ω(ξ1 + ξ2) for any ξ1, ξ2 ∈H;
(2) ω(−ξ)= ω(ξ)∗ for any ξ ∈H; and
(3)

∫
ω(ξ) dµ= exp(−‖ξ‖2), for any ξ ∈H.

http://journals.cambridge.org
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The Gaussian action of 0 on (Xπ , µ) is defined via the action on L∞(Xπ ) by
π̃γ (ω(ξ))= ω(πγ (ξ)) for all γ ∈ 0 and ξ ∈H.

Definition 2.9. Let 0yσ (A, τ ) be a trace-preserving action of 0 on a finite von Neumann
algebra A and let M = A oσ 0 be the cross-product von Neumann algebra. The Gaussian
dilation associated to M is the von Neumann algebra M̃ = (A⊗̄L∞(Xπ ))oσ⊗π̃ 0.

Let q : 0→H be an array for the representation π as above. The deformation is
constructed as follows. For each t ∈ R, define the unitary Vt ∈ U(L2(A)⊗ L2(Xπ )⊗
`2(0)) by

Vt (a ⊗ d ⊗ δγ ) := a ⊗ ω(tq(γ ))d ⊗ δγ

for all a ∈ L2(A), d ∈ L2(Xπ ), and γ ∈ 0. In [5] it was proved that Vt is a strongly
continuous one parameter group of unitaries having the following transversality property.

PROPOSITION 2.10. [5, Lemma 2.8] For each t and any ξ ∈ L2(M), we have

2‖Vt (ξ)− e · Vt (ξ)‖
2
2 ≥ ‖ξ − Vt (ξ)‖

2
2, (2.2)

where e denotes the orthogonal projection of L2(M̃) onto L2(M).

The following ‘asymptotic bimodularity’ property of the deformation Vt is the most
crucial consequence of the array property. The following proposition is essentially
[5, Lemma 2.6].

PROPOSITION 2.11. Let 0 be a group, let π : 0→O(H) be an orthogonal representation
and let q : 0→H be an array for π . Assume that 0yσ A is a trace preserving action
and let 0yσ⊗π A⊗̄L∞(Xπ ) be the Gaussian construction associated to π . Denote by
M = A o 0 and M̃ = (A⊗̄L∞(Xπ ))oσ⊗π̃ 0 the corresponding crossed product von
Neumann algebras so that M ⊂ M̃. To q we associate the path of isometries Vt : L2(M)→
L2(M̃) obtained by restricting the Vt ’s constructed above. Then for every x, y ∈ A oσ,r 0
in the reduced C∗-crossed product subalgebra of A o 0 we have

lim
t→0

sup
‖ξ‖2≤1

‖xVt (ξ)y − Vt (xξ y)‖2 = 0. (2.3)

Let ρ : 0→O(H) be an orthogonal representation of 0 which admits no non-zero
invariant vectors, i.e. ρ is ergodic. In this case ρ has spectral gap if and only if it does not
weakly contain the trivial representation. The orthogonal representation ρ is non-amenable
if ρ ⊗ ρ is ergodic and has spectral gap.

PROPOSITION 2.12. [32, Proposition 2.7] The orthogonal representation ρ is non-
amenable if and only if the Koopman representation ρ̃ : 0→ U(L2(Xρ)	 C1) associated
to the Gaussian action is ergodic and has spectral gap.

3. Technical results
In this section we present the new technique for working with quasi-cocycles which will
allow us to prove the main results of the paper. Studying the properties of groups through
various Hilbert space embeddings, e.g. quasi-cocycles, which are compatible with some
representation has emerged as a fairly important tool which captures many interesting

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 15 Dec 2014 IP address: 128.255.45.122

10 I. Chifan et al

aspects regarding the internal (algebraic) structure of the group. The principle is parallel to
the use of geometric techniques (via a word-length metric) to deduce algebraic structure—
the difference being that while geometric techniques focus on deducing structure from
assumptions on the length function itself, quasi-cocycle (or array) techniques impose
structure from the existence of a generic Hilbert space-valued ‘length’ function which
is compatible with a specific representation.

Continuing this trend we show next that if the representation is mixing then the finite
radius balls with respect to the natural length function induced by the quasi-cocycle are, in
a sense, highly malnormal. As a consequence we show that we have large sets in the group
which are asymptotically free.

THEOREM 3.1. Let 0 be a countable, discrete group, π : 0→O(H) be an orthogonal
representation which is mixing with respect to some family G, and q : 0→H be a quasi-
cocycle with defect D. For every C ≥ 0 we denote BC := {γ ∈ 0 : ‖q(γ )‖ ≤ C}. For
every finite set F ⊂ 0\B2C+2D there exists a subset K ⊂ BC which is small with respect
to the family G such that

F(BC\K ) ∩ (BC\K )F = ∅.

Moreover, if the quasi-cocycle q is bounded on each group in G, then for every finite set
F ⊂ 0\B6C+6D one can find a subset K ⊂ BC which is small with respect to the family G
and satisfies

F(BC\(K 2
∪ K ))F(BC\(K 2

∪ K )) ∩ (BC\(K 2
∪ K ))F(BC\(K 2

∪ K ))F = ∅.

The proof rests on the following key technical result.

PROPOSITION 3.2. Let 0 be a countable group together with a family of subgroups G,
π : 0→O(H) be an orthogonal representation that is mixing with respect to G, and
q : 0→H be a quasi-cocycle. For every C ≥ 0 we denote

BC := {γ ∈ 0 : ‖q(γ )‖ ≤ C}.

Fix C ≥ 0 and an integer `≥ 2. Also let k1, k2, . . . , k` ∈ 0 be elements such that,
for each 1≤ i ≤ ` there exists an infinite sequence (γn,i )n ∈ BC such that for all n
we have k1γn,1k2γn,2k3γn,3 · · · k`γn,` = e and each of the following sets {γn,1 : n ∈ N},
{γn,1k2γn,2 : n ∈ N},{γn,1k2γn,2k3γn,3 : n ∈ N}, . . . ,{γn,1k2 · · · γn,`−2k`−1γn,`−1 : n ∈ N}
tends to infinity with respect to G. Then k1 ∈ B(`−1)(2C+2D).

Proof. To begin, we claim that for all x1, x2, . . . , xm ∈ BC , b2, b3, . . . , bm ∈ 0, and
k ∈H we have

|〈q(x1b2x2 · · · xm−1bm xm), k〉| ≤ (m − 1)(2C + 2D)‖k‖

+

m∑
i=2

|〈πx1b2x2···bi−1xi−1(q(bi )), k〉|. (3.1)

To prove our statement note that since k−1
1 = γn,1k2γn,2k3γn,3 · · · k`γn,`, then (3.1)

implies
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‖q(k−1
1 )‖2 = 〈q(γn,1k2γn,2k3γn,3 · · · k`γn,`), q(k−1

1 )〉

≤ (`− 1)(2C + 2D)‖q(k−1
1 )‖

+

∑̀
i=2

|〈πγn,1k2γn,2···ki−1γn,i−1(q(ki )), q(k−1
1 )〉|. (3.2)

Since each of the sets {γn,1 : n ∈ N}, {γn,1k2γn,2 : n ∈ N}, . . . , {γn,1k2γn,2 · · · k`−1γn,`−1 :

n ∈ N} tends to infinity relative to G and π is a mixing relative to G, taking the limit as
n→∞ in (3.2) we get

‖q(k−1
1 )‖2 ≤ (`− 1)(2C + 2D)‖q(k−1

1 )‖.

Hence, by anti-symmetry we have

‖q(k1)‖ = ‖q(k−1
1 )‖ ≤ (`− 1)(2C + 2D).

To prove the claim we argue by induction on m. When m = 2, using the quasi-cocycle
relation (2.1) and the Cauchy–Schwarz inequality we have that

|〈q(x1b2x2), k〉| ≤ D‖k‖ + |〈q(x1)+ πx1(q(b2x2)), k〉|

≤ (D + ‖q(x1)‖)‖k‖ + |〈πx1(q(b2x2)), k〉|

≤ (C + 2D)‖k‖ + |〈πx1(q(b2)), k〉| + |〈πx1b2(q(x2)), k〉|

≤ (2C + 2D)‖k‖ + |〈πx1(q(b2)), k〉|.

For the inductive step assume (3.1) holds for 2, . . . , m; thus, we have that

|〈q(x1b2 · · · bm xmbm+1xm+1), k〉|

≤ |〈πx1b2q(x2b3 · · · bm xmbm+1xm+1), k〉| + (C + 2D)‖k‖ + |〈πx1(q(b2)), k〉|

≤ m(2C + 2D)‖k‖ +
m∑

i=2

|〈πx1b2x2···bi−1xi−1(q(bi )), k〉|, (3.3)

which proves the claim. �

Proof of Theorem 3.1. Let k1, k2 ∈ F ⊂ 0\B2C+2D be fixed elements and let (γn,1)n ,
(γn,2)n be sequences in BC such that k1 BC ∩ BC k2 = {k1γn,1 = γn,2k2 : n ∈ N}. In
particular we have k1γn,1k−1

2 γ−1
n,2 = e for all n, so by the previous proposition (for `= 2)

the set {γ−1
n,1 : n ∈ N} is small over G and so is Kk1,k2 = {γn,1 : n ∈ N}. Indeed, if the set

were not small with respect to G, one could find a subsequence tending to infinity with
respect to G, whence k1 ∈ B2C+2D , a contradiction. This entails that k1(BC\Kk1,k2) ∩

(BC\Kk1,k2)k2 = ∅ and hence if we let K =
⋃

k1,k2∈F Kk1,k2 we see that K is small with
respect to G and F(BC\K ) ∩ (BC\K )F = ∅.

For the second part let k1, k2, k3, k4 ∈ F ⊂ 0\B6C+6D and assume that there exist
infinite sequences (γn,i )n ∈ BC with 1≤ i ≤ 4 such that k1 BC k2 BC ∩ BC k3 BC k4 :=

{k1γn,1k2γn,2 = γn,3k3γn,4k4 : n ∈ N}. This further implies that k1γn,1k2γn,2k−1
4 γ−1

n,4 k−1
3

γn,3 = e, for all n ∈ N. Then from the previous proposition it follows that at least one of
the sets {γn,1 : n ∈ N}, {γn,1k2γn,2 : n ∈ N}, or {γn,1k2γn,2k−1

4 γ−1
n,4 : n ∈ N} must be small
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with respect to G. If we have either the set {γn,1 : n ∈ N} or the set {γn,1k2γn,2k−1
4 γ−1

n,4 :

n ∈ N} = {k−1
1 γ−1

n,3 k3 : n ∈ N} (and hence {γn,3 : n ∈ N}!) is small with respect to G then
the conclusion follows immediately. So it remains to analyze the case when {γn,1 : n ∈ N}
tends to infinity with respect to G while the set {γn,1k2γn,2 : n ∈ N} is small with respect
to G. Here we only need to investigate the case when there exists an infinite sequence
of positive integers (rn)n such that {γrn ,1 : n ∈ N} tends to infinity with respect to G,
elements m1, m2 ∈ 0, and a sequence of elements an ∈6 for some 6 ∈ G such that
γrn ,1k2γrn ,2 = m1anm2 for all n ∈ N. Note that the latter equation can be rewritten as

k2γrn ,2m−1
2 a−1

n m−1
1 γrn ,1 = e for all n ∈ N. (3.4)

If the set {γrn ,2 : n ∈ N} would tend to infinity with respect to G then, as {k2γrn ,2m−1
2 a−1

n :

n ∈ N} = {γ−1
rn ,1m1 : n ∈ N}, we would have by the previous proposition that k2 ∈ B4C+4D

which is a contradiction. Therefore {γrn ,2 : n ∈ N} must be small with respect to G, and by
equation (3.4) it follows that there exists a set K which is small with respect to G such that
{γrn ,1 : n ∈ N} ⊂ K 2. This gives the desired conclusion.

In the case of mixing representations we get the following sharper result.

COROLLARY 3.3. Let 0 be a countable, discrete group, and let π : 0→O(H) be a
mixing orthogonal representation. Assume q : 0→H is a quasi-cocycle and for every
C ≥ 0 we denote BC := {γ ∈ 0 : ‖q(γ )‖ ≤ C}. Let C ≥ 0 and let k1, k2, . . . , k` ∈ 0 be
elements such that, for each 1≤ i ≤ ` there exists a sequence (γn,i )n ∈ BC which tends
to infinity such that we have k1γn,1k2γn,2k3γn,3 · · · k`γn,` = e for all n. Then there exists
1≤ j ≤ n such that k j ∈ B`(C+D). In other words, for every finite set F ⊂ 0\B2`(C+D)

there exists a finite subset K ⊂ BC such that

e 6∈ [F(BC\K )]` := [F(BC\K )][F(BC\K )] · · · [F(BC\K )]︸ ︷︷ ︸
`-times

. (3.5)

In particular, for every finite set F ⊂ 0\B2`(C+D) and every 1≤ κ ≤ ` there exists a finite
subset K ⊂ BC such that

[F(BC\K )]κ ∩ [(BC\K )F]`−κ = ∅.

Proof. First we claim that there exist two positive integers 1≤ s < t ≤ `, an infinite
sequence (rn)n of positive integers, and an element k′t ∈ 0 such that for all n we have

|{ksγrn ,s : n ∈ N}| = |{ksγrn ,sks+1γrn ,s+1 : n ∈ N}|
= · · · = |{ksγrn ,sks+1γrn ,s+1 · · · kt−1γrn ,t−1 : n ∈ N}| =∞; (3.6)

ksγrn ,sks+1γrn ,s+1 · · · kt−1γrn ,t−1k′tγrn ,t = e. (3.7)

Next we observe that if this is the case then applying Proposition 3.2 above it follows that
ks ∈ B2(t−s)(C+D) ⊆ B2`(C+D). The remaining part of the statement follows easily from
this.

Therefore, it only remains to show that the claimed equations (3.6) and (3.7) hold. We
proceed by induction on `. When `= 2 the statement is trivial. To prove the inductive step,
assume the statements hold for all 2≤ m ≤ `− 1 and we will show it for `. Notice that
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since by assumption we have k1γn,1k2γn,2k3γn,3 · · · k`γn,` = e for all n, then there exists
a smallest integer 2≤ d1 ≤ ` such that the sets {k1γn,1 : n ∈ N}, {k1γn,1k2γn,2 : n ∈ N},
. . . , {k1γn,1k2γn,2 · · · kd1−1γn,d1−1 : n ∈ N} are infinite while {k1γn,1k2γn,2 · · · kdγn,d1 :

n ∈ N} is finite. If d1 = ` then (3.6) and (3.7) follow trivially.
If d1 ≤ `− 1 there exists an infinite sequence (an)n of integers and c ∈ 0

such that k1γan ,1k2γan ,2 · · · kd1γan ,d1 = c, for all n, whence we have that
k2γan ,2 · · · kd1γan ,d1k′1γan ,1 = e, for all n, where we denoted k′1 = c−1k1. In this case
(3.6) and (3.7) follow from the induction assumption. �

We note that the previous corollary can be easily generalized to the case of quasi-
cocycles into representations π which are mixing relative to a family of subgroups G.
The statement is virtually the same with the exception that, rather than a finite set, in this
case K will be a set which is small with respect to G and equation (3.5) will hold with K
replaced by

⋃[`/2]+1
j=1 K j . The proof is also very similar to the one presented above and

we leave it to the reader.

Remark 3.4. The above results are an approximate translation to the quasi-cocycle
perspective of [8, Proposition 2.8] which states that if 3< 0 hyperbolically embedded,
then 3 is almost malnormal in 0—i.e. |3 ∩ γ3γ−1

|<∞ whenever γ 6∈3. Indeed
[16, Theorem 4.2] seems to suggest (though it is not explicitly proven) that starting
from 0 ∈ Q Z1

as(3, λ
⊕∞

3 ), one can construct a quasi-cocycle q ∈ Q Z1
as(0, λ

⊕∞

0 ) such that
q|3 ≡ 0 and which is proper with respect to 3. By essentially the same techniques as
above, this, with some work, ought to imply the almost malnormality of 3.

4. Central sequences, asymptotic relative commutants, and inner amenability
In this section we prove the main results of this paper. First we establish a fairly general
theorem which classifies all the central sequences in von Neumann algebras arising from
groups (or actions of groups) which admit unbounded quasi-cocycles into (relatively)
mixing representations.

4.1. Non-Gamma factors.

THEOREM 4.1. Let 0 be a countable discrete group together with a family of subgroups
G such that 0 satisfies condition NC(G). Let (A, τ ) be any finite von Neumann algebra
equipped with a faithful, normal trace τ , and let 0y (A, τ ) be any trace preserving
action. Also assume that ω is a free ultrafilter on the positive integers N.

Then for any asymptotically central sequence (xn)n ∈ M ′ ∩ Mω there exists a finite
subset F ⊆ G such that (xn)n ∈ ∨6∈F (A o6)ω ∨ M, the von Neumann subalgebra of
Mω generated by M and (A o6)ω for 6 ∈ F .

Proof. Let q be an arbitrary (anti-)symmetric array into an orthogonal representation π
which is non-amenable, and consider the corresponding deformation Vt as defined in §2.3.
We fix the notation A o 0 = M ⊂ M̃ = (L∞(Xπ )⊗̄A)o 0. We will prove first that Vt

converges to the identity on any element of M ′ ∩ Mω.
So, let (xn)n ∈ M ′ ∩ Mω and fix ε > 0. Since the representation π is non-amenable,

then by Proposition 2.12 so is the Koopman representation σπ : 0→ U(L2(Xπ )	 C1).
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This implies that one can find a finite subset K ⊂ 0 and L > 0 such that for all
ξ ∈ L2(M̃)	 L2(M) we have ∑

k∈K

‖ukξ − ξuk‖2 ≥ L‖ξ‖2. (4.1)

By Proposition 2.11 above choose tε > 0 such that for all k ∈ K and all tε ≥ t ≥ 0 we have

sup
n
‖Vt (uk xnu∗k)− uk Vt (xn)u∗k‖2 ≤

εL
√

2|K |
. (4.2)

Using the transversality property (Proposition 2.10) together with (4.1), (4.2), and
limn ‖[uk, xn]‖2 = 0 for all k ∈ K we see that for all tε ≥ t ≥ 0 we have

lim sup
n
‖Vt (xn)− xn‖2

≤ lim sup
n

√
2‖e⊥M Vt (xn)‖2

≤ lim sup
n

√
2

L

∑
k∈K

‖uke⊥M Vt (xn)u∗k − e⊥M Vt (xn)‖2

≤ lim sup
n

√
2

L

(∑
k∈K

‖e⊥M Vt (uk xnu∗k − xn)‖2 +
∑
k∈K

‖Vt (uk xnu∗k)− uk Vt (xn)u∗k‖2

)

≤ lim sup
n

√
2

L

(∑
k∈K

‖[uk, xn]‖2 +
εL
√

2

)
= ε, (4.3)

which proves the desired claim.
From this point the proof breaks into two cases.
Case 1. Let π be an orthogonal representation which is non-amenable and mixing

with respect to G. We further assume that π admits an unbounded quasi-cocycle, and let
q ∈ Q Z1

as(0, π) be any such one of some defect D ≥ 0.
In this case we show that the uniform convergence of Vt will be sufficient to locate the

asymptotic central sequences in M . Let (xn)n ∈ M ′ ∩ Mω, and let ε > 0. From the first
part there exists tε > 0 such that for all 0≤ |t | ≤ tε we have

lim sup
n
‖xn − Vt (xn)‖2 ≤ ε. (4.4)

For every R ≥ 0 denote BR = {g ∈ 0 : ‖q(g)‖ ≤ R}, and by PR the orthogonal projection
from L2(M) onto span{aug : a ∈ A, g ∈ BR}. Then (4.4) together with a simple
computation show that there exists C ≥ 0 for which

lim sup
n
‖xn − PC (xn)‖2 ≤ ε. (4.5)

Using the triangle inequality, for every y ∈ U(M) we have that

‖y PC (xn)− PC (xn)y‖2 ≤ ‖y(PC (xn)− xn)− (PC (xn)− xn)y‖2 + ‖[y, xn]‖2

≤ 2‖PC (xn)− xn‖2 + ‖[y, xn]‖2
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and when this is further combined with (4.5) we get

lim sup
n
‖y PC (xn)− PC (xn)y‖2 ≤ 2ε for all y ∈ U(M). (4.6)

By Theorem 3.1, for γ ∈ (B2C+2D)
c
= 0\B2C+2D there exist finite subsets F, K ⊂ 0,

F ⊂ G such that
γ (BC\FFK ) ∩ (BC\FFK )γ = ∅. (4.7)

Next we show that (xn)n ∈ ∨6∈F (A o6)ω ∨ M . Suppose by contradiction this is not
the case. Thus by subtracting from (xn)n its conditional expectation onto ∨6∈F (A o6)ω
∨ M we can assume that 0 6= (xn)⊥∨6∈F (A o6)ω ∨ M . Since the subsets K , F ⊂ 0,
F ⊂ G are finite this further implies that

lim
n
‖PFFK (xn)‖2 = 0. (4.8)

Picking y = uγ with γ ∈ 0\B2C+2D in (4.6), we obtain that

lim sup
n
‖uγ PC (xn)− PC (xn)uγ ‖2 ≤ 2ε,

and using this in combination with (4.8) we have

lim sup
n
‖uγ PBC\FFK (xn)− PBC\FFK (xn)uγ ‖2

≤ lim sup
n
‖uγ PBC (xn)− PBC (xn)uγ ‖2 + 2 lim sup

n
‖PFFK (xn)‖2

≤ 2ε. (4.9)

Altogether, relations (4.9), (4.7) and (4.8) lead to the following inequality:

4ε2
≥ lim sup

n
‖uγ PBC\FFK (xn)− PBC\FFK (xn)uγ ‖22

= lim sup
n

(‖uγ PBC\FFK (xn)‖
2
2 + ‖PBC\FFK (xn)uγ ‖22)

= 2 lim sup
n
‖PBC\FFK (xn)‖

2
2

= 2 lim sup
n

(‖PBC (xn)‖
2
2 − ‖PFFK (xn)‖

2
2)

= lim sup
n

2‖PBC (xn)‖
2
2

= 2(1− ε)2,

which for ε small enough is a contradiction.
Case 2. Let π be a non-amenable representation, and let q be an array associated to π
which is proper with respect to G.

Indeed, suppose it was the case that (xn)n 6∈ ∨6∈F (A o6)ω ∨ M . Let ξn := e⊥M Vt (xn),
then by essentially the same argument as in [5, Theorem 3.2], it would follow that Vt could
not converge uniformly to the identity on M ′ ∩ Mω, a contradiction. �

A well-known theorem of Connes [7, Theorem 2.1] shows that property Gamma is
equivalent to the existence of a net ξn ∈ L2(M)	 C1̂ of unit-norm vectors such that
‖xξn − ξn x‖2→ 0 for all x ∈ M .
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COROLLARY 4.2. If in the previous theorem we assume in addition that the family G
consists only of non-inner amenable subgroups then M ′ ∩ Mω

⊆ Aω o 0. Therefore if the
action 0y A is also free and strongly ergodic then M does not have property Gamma of
Murray and von Neumann.

4.2. Non-inner amenability. Similar techniques can be applied to provide a fairly large
class of groups which are not inner amenable; in particular, this extends some of the results
covered by Theorem 4.1. In order to apply the method described in the previous section we
need to use a well-known C∗-algebraic characterization of inner amenability which follows
from the alternative characterization of inner amenability as stated in the introduction.
Namely, 0 is inner amenable if and only if there exists a sequence of unit vectors (ξn)n ∈

`2(0)	 Ce such that limn ‖xξn − ξn x‖2 = 0 for all x ∈ C∗r (0). To properly state our
result we need to introduce the following definition.

Definition 4.3. Let 0 be a countable group and let 6 < 0 be a subgroup. We say that 0 is
i.c.c. over6 if for every finite subset F ⊂ 0 there exists γ ∈ 0 such that γ (F6F−1)γ−1

∩

F6F−1
= {e}.

We used this terminology only because it naturally extends the classical i.c.c. notion for
groups. The next result is probably folklore (and follows from a similar but more general
statement such as [38, Lemma 2.4]), but we include a proof for the sake of completeness.

PROPOSITION 4.4. Any countable group 0 is i.c.c. if and only if 0 is i.c.c. over 6 = {e}.

Proof. One can easily see that the reverse implication holds, so we need only show the
forward implication. This follows immediately once we show that for every finite subset
K ⊂ 0\{e} there exists γ ∈ 0 such that γ Kγ−1

∩ K = ∅. We proceed by contradiction,
so suppose there exists a finite set K0 ⊂ 0\{e} such that for all γ ∈ 0 we have that

γ K0γ
−1
∩ K0 6= ∅. (4.10)

Consider the Hilbert space H= `2(0\{e}) and denote by ξ the characteristic function of
K0. Since K0 is finite then ξ ∈H. From (4.10), a simple calculation shows that

〈uγ ξu−1
γ , ξ 〉 ≥

1
|K0|

> 0 for all γ ∈ 0. (4.11)

Therefore if we denote by K ⊂H the closed, convex hull of the set {uγ ξuγ−1 : γ ∈ 0} and
denote by ζ the unique ‖ · ‖2-minimal element in K, then from (4.11) we have that 〈ζ, ξ 〉 ≥
1/|K0|> 0, in particular ζ 6= 0. Hence, if we decompose ζ =

∑
γ∈0\{e} ζγ δγ , there exists

λ ∈ 0\{e} such that ζλ 6= 0. On the other hand, by uniqueness, ζ satisfies that uγ ζuγ−1 = ζ

for all γ ∈ 0, whence we have 0 6= ζλ = ζγ λγ−1 for all γ ∈ 0. Since ζ ∈ `2(0) it follows
that the orbit under conjugation {γ λγ−1

: γ ∈ 0} is finite thus contradicting the i.c.c.
assumption on 0. �

With these notations at hand we are ready to state the main theorem.

THEOREM 4.5. Let 0 be an i.c.c., countable, discrete group together with a family of
subgroups G so that 0 is i.c.c. over every subgroup 6 ∈ G. If 0 satisfies condition NC(G),
then 0 is not inner amenable.
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Since any multiple of the left-regular representation of any non-amenable group is
both non-amenable and mixing, the theorem shows that every non-amenable i.c.c. group
0 satisfying Q H1

as(0, λ
⊕∞

0 ) 6= ∅ is not inner amenable; in particular, L0 does not have
property Gamma of Murray and von Neumann. By [16, Theorem 1.4] this covers all non-
amenable groups which admit hyperbolically embedded subgroups, so our result recovers
Theorem 8.2 (f) from [8]. The result also demonstrates that all groups with positive first
`2-Betti number are either finite or non-inner amenable since for any such group 0 it
holds that H1(0, λ0) 6= 0, cf. [33]. Finally, we point out that in the case that 0 has a
non-amenable orthogonal representation π which admits a proper symmetric array (i.e. 0
belongs to the class QH), then the fact that 0 is not inner amenable is already contained
in [5, Proposition 1.7.5].

Proof of Theorem 4.5. We will proceed by contradiction, so suppose 0 is inner amenable.
Thus there exists a sequence (ξn)n ∈ `

2(0)	 Ce of unit vectors such that for every x ∈
C∗r (0) we have

lim
n→0
‖xξn − ξn x‖2 = 0. (4.12)

Let π be a non-amenable representation, and let q be any (anti-)symmetric array
associated to π . As in the previous theorem, let M = L0 and let M̃ = L∞(Y π )o 0 be
the Gaussian construction associated with π . Consider Vt : L2(M)→ L2(M̃) for t ∈ R,
the associated path of unitaries as defined in §2.3. Using the non-amenability of π , the
same spectral gap argument as in Theorem 4.1 shows that limt→0(supn ‖e

⊥

M Vt (ξn)‖2)= 0.
By the transversality property (Proposition 2.10) this gives that limt→0(supn ‖ξn −

Vt (ξn)‖2)= 0. Then a simple calculation shows that for every ε > 0 there exists C ≥ 0
such that

sup
n
‖ξn − PB′C

(ξn)‖2 ≤ ε. (4.13)

As before, we have denoted by PB′C
the orthogonal projection from `2(0) onto the Hilbert

subspace `2(B ′C ) with B ′C = {λ : ‖q(λ)‖ ≤ C, λ 6= e} being the ball of radius C centered
and pierced at the identity element e. Using the triangle inequality, relations (4.12) and
(4.13) show that for every γ ∈ 0 we have

lim sup
n
‖uγ PB′C

(ξn)− PB′C
(ξn)uγ ‖2 ≤ 2ε. (4.14)

If we write ξn =
∑
η∈0 ξ

n
η δη with ξn

η ∈ C then (4.14) gives the following estimates:

4ε2
≥ lim sup

n

∥∥∥∥∑
η∈B′C

ξn
η δγ η − ξ

n
η δηγ

∥∥∥∥2

2

= lim sup
n

(∥∥∥∥ ∑
s∈γ B′C\B

′
Cγ

ξn
γ−1sδs

∥∥∥∥2

2
+

∥∥∥∥ ∑
s∈B′Cγ \γ B′C

ξn
sγ−1δs

∥∥∥∥2

2

+

∥∥∥∥ ∑
s∈γ B′C∩B′Cγ

(ξn
γ−1s − ξ

n
sγ−1)δs

∥∥∥∥2

2

)

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 15 Dec 2014 IP address: 128.255.45.122

18 I. Chifan et al

= lim sup
n

(
2
∑

s∈B′C

|ξn
s |

2
+

∑
s∈γ B′C∩BCγ

|ξn
γ−1s − ξ

n
sγ−1 |

2

−

∑
s∈γ B′C∩B′Cγ

(|ξn
γ−1s |

2
+ |ξn

sγ−1 |
2)

)
.

Since ξn are unital vectors then the previous estimate together with (4.13) show that

4ε2
+ lim sup

n

∑
s∈γ B′C∩B′Cγ

(
|ξn
γ−1s |

2
+ |ξn

sγ−1 |
2
)

≥ lim sup
n

(
2‖PB′C

(ξn)‖
2
2 +

∑
s∈γ B′C∩B′Cγ

|ξn
γ−1s − ξ

n
sγ−1 |

2
)

≥ 2(1− ε2).

Altogether, the previous inequalities imply that for every γ ∈ 0 we have

lim sup
n

( ∑
s∈(γ B′Cγ

−1∪γ−1 B′Cγ )∩B′C

|ξn
s |

2
)
≥ 2(1− 3ε2). (4.15)

Since
∑

s |ξ
n
s |

2
= ‖ξn‖

2
= 1 we conclude that, for every γ ∈ 0 we have

lim sup
n
‖PAγ (ξn)‖

2
2 = lim sup

n

(∑
s∈Aγ

|ξn
s |

2
)
≥ 1− 6ε2. (4.16)

Here for every γ ∈ 0 we have denoted Aγ = γ B ′Cγ
−1
∩ B ′C and for a set �⊂ 0 we

denoted by P� the orthogonal projection from `2(0) onto `2(�).

Claim. We have assumed that 0 is i.c.c. over every 6 ∈ G and admits a map q : 0→H
such that either: (1) q is an array associated to π which is proper with respect to G; or
(2) π is mixing with respect to G and q is an unbounded quasi-cocycle. In either case we
claim that there exist γ ∈ 0 together with finite subsets Go ⊂ G and F ⊂ 0 such that Aγ ⊆⋃
6∈Go

F6F . When q is a proper array this is straightforward because for every γ ∈ 0
we have Aγ ⊂ BC and, by the properness assumption, the latter is contained in a finite
union of finitely many left-right translates of groups in G. For the other case, denote by D
the defect of the quasi-cocycle q and fix γ ∈ 0\B2C+2D . Applying Theorem 3.1 it follows
that Aγ γ = γ B ′C ∩ B ′Cγ is contained in a set which is small with respect to G. This further
implies that one can find finite sets Go ⊂ G and F ⊂ 0 such that Aγ ⊆

⋃
6∈Go

F6F ,
as desired.

Using our claim, after passing to a subsequence of ξn , the inequality (4.16) implies that
for all n we have

‖P⋃
6∈Go F6F (ξn)‖

2
2 =

∑
s∈
⋃
6∈Go F6F

|ξn
s |

2
≥ 1− 6ε2.

Since Go is finite, by passing one more time to a subsequence of ξn there exists 6 ∈ Go

such that for all n we have

‖PF6F\{e}(ξn)‖
2
2 = ‖PF6F (ξn)‖

2
2 =

∑
s∈F6F

|ξn
s |

2
≥

1− 6ε2

|Go|
:= Mε > 0, (4.17)
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where PF6F denotes the orthogonal projection from `2(0) onto `2(F6F). Next
we claim that from the assumption that 0 is i.c.c. over every group in G one can
construct inductively two infinite sequences (F`)`, (G`)` of finite subsets of 0 such
that (F`6G`)\{e} are pairwise disjoint sets and lim supn ‖PF`6G`\{e}(ξn)‖

2
2 ≥ Mε for

all ` ∈ N. Using Parseval’s identity for every ` ∈ N we have that 1= lim supn ‖ξn‖
2
2 ≥

lim supn
∑`

i=1 ‖PFi6Gi\{e}(ξn)‖
2
2 ≥ `Mε, which is a contradiction when ` is arbitrarily

large, whence 0 is not inner amenable.
In the remaining part of the proof of this case we show the claim above by induction

on `. Since the case `= 1 follows immediately from (4.17) by letting F1 = G1 = F , we
only need to show the induction step. So assume that for 1≤ i ≤ ` we have constructed
finite subsets Fi , Gi ⊂ 0 such that sets (Fi6Gi )\{e} are pairwise disjoint and

lim sup
n
‖PFi6Gi\{e}(ξn)‖

2
2 ≥ Mε for all 1≤ i ≤ `. (4.18)

Now we will indicate how to build the subsets F`+1, G`+1 ⊂ 0 with the required
properties. Since Fi and Gi are finite sets then so are F ′ =

⋃`
i=1 Fi and G ′ =

⋃`
i=1 Gi

and from the assumption there exists µ ∈ 0 such that µ(F ′6G ′)µ−1
∩ F ′6G ′ = {e}.

Using the projection formula Pγ�γ−1(ξ)= uγ P�(uγ−1ξuγ )uγ−1 for γ ∈ 0, ξ ∈ `2(0),
and �⊆ 0 in combination with the triangle inequality, limn ‖uµ−1ξnuµ − ξn‖2 = 0, and
(4.18) we see that

lim sup
n
‖Pµ(F ′6G ′)µ−1\{e}(ξn)‖2 = lim sup

n
‖Pµ(F ′6G ′)µ−1(ξn)‖2

≥ lim sup
n

(‖uµPF ′6G ′(ξn)uµ−1‖2

− ‖Pµ(F ′6G ′)µ−1(ξn)− uµPF ′6G ′(ξn)uµ−1‖2)

= lim sup
n

(‖PF ′6G ′(ξn)‖2 − ‖PF ′6G ′(uµξnuµ − ξn)‖2)

≥ lim sup
n

(‖PF ′6G ′(ξn)‖2 − ‖uµ−1ξnuµ − ξn‖2)

≥ lim sup
n
‖PF ′6G ′(ξn)‖2 − lim

n
‖uµ−1ξnuµ − ξn‖2

≥ Mε.

Altogether, this computation and the choice of x show that the sets F`+1 = µF ′ and
G`+1 = G ′µ−1 satisfy the required conditions.

As a corollary we recover and generalize a result of de la Harpe and Skandalis.

PROPOSITION 4.6. (de la Harpe and Skandalis [14]) (1) If 0 is a lattice in a real,
connected, semi-simple Lie group G with trivial center and no compact factors, then 0
is not inner amenable. (2) In general, let G = G1 × G2 be a unimodular l.c.s.c. group
such that G1 is topologically i.c.c.† and has property (HH). Then any i.c.c. irreducible
lattice 0 < G is not inner amenable.

† That is, for any compact neighborhood e ∈ K ⊂ G of the identity, and any neighborhood U 3 e, there exists
g1, . . . , gn ∈ G such that g1 K g−1

1 ∩ · · · ∩ gn K g−1
n ⊂U .
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Proof. Note that in case (1) 0 is i.c.c. as a consequence of Borel density, cf. [13]. Without
loss of generality we may assume 0 is irreducible, as any lattice is a product of such. In the
case (1), we may further assume that G does not have property (T); otherwise, this would
imply that 0 is an i.c.c. property (T) group, therefore not inner amenable. Hence, G has a
factor with property (HH), cf. [30]. Since G is without compact factors, it is topologically
i.c.c.; thus, we have reduced case (1) to case (2).

So, now assume we are in the general situation of case (2). By Example 2.6 and
Theorem 4.5, we need only show that 0 is i.c.c. relative to any subgroup 6 such that
the projection into G1 is pre-compact. This is true by the topological i.c.c. property and
the irreducibility which implies that the image of 0 under the projection is dense in G1. �

4.3. Around property Gamma. If M is a separable II1 factor, a trivial consequence of
M not having property Gamma is that M cannot be written as an infinite tensor product of
non-scalar finite factors. The next result shows that not having property Gamma implies a
stabilized version of this property; to be precise, M not having property Gamma implies
that M⊗̄R is not isomorphic to a infinite tensor product of non-amenable factors. As usual,
R denotes the hyperfinite II1 factor. We remark that under the stronger assumption that
each factor in the tensor is non-Gamma, indecomposability follows by [37, Theorem 4.1].

THEOREM 4.7. Let M be a II1 factor which does not have property Gamma. If {Ni : i ∈ I }
is any countable collection of non-amenable II1 factors such that M⊗̄R ∼=

⊗̄
i∈I Ni then

I is a finite set.

Proof. Suppose by contradiction that |I | =∞; hence, there exists an infinite sequence
In ⊂ I of finite subsets such that In ⊂ In+1 and

⋃
n In = I . Denote Jn = I\In , N (Jn)=⊗̄

i∈Jn
Ni , and N (In)=

⊗̄
i∈In

Ni . Fix ω a free ultrafilter on N. Applying a spectral gap
argument, we will show that there exists s ∈ N such that N (Js)

ω
⊆ M⊗̄Rω.

To do this, we note that by [7, Theorem 2.1] there exists a finite subset F ⊂ U(M) and
C > 0 such that for all x ∈ M⊗̄R we have∑

u∈F

‖xu − ux‖22 ≥ C‖ER(x)− x‖22. (4.19)

Since M is the inductive limit of N (In) as n→∞ and N (In) commute with N (Jn)

for all n then using (4.19) together with some basic approximations and the triangle
inequality we obtain the following: for every ε > 0 there exist sε ∈ N such that for every
x ∈ (N (Jsε ))1 we have ‖ER(x)− x‖2 ≤ ε. If we let ε to be small enough, by applying
Popa’s intertwining techniques from [34] we obtain that a corner of N (Jsε ) intertwines
into R inside M . This however is a contradiction because no corner of a non-amenable
factor can be intertwined into an amenable von Neumann algebra. Therefore I cannot be
infinite, and we have finished. �

Following [40] a factor M is called asymptotically abelian if there exists a sequence
of automorphisms θn ⊂ Aut(M) such that limn ‖θn(x)y − yθn(x)‖2 = 0 for all x, y ∈ M .
Next we will show that using the previous techniques one can provide a fairly large class
of algebras that are not asymptotically abelian. In particular the result provides many new
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examples of McDuff factors which are not asymptotically abelian, enlarging the class of
examples found in [40].

PROPOSITION 4.8. Let M be a II1 factor which does not have property Gamma. If P is
any amenable finite factor, then the factor M⊗̄P is not asymptotically abelian.

Proof. Suppose by contradiction that N := M⊗̄P is asymptotically abelian; thus, there
exists a sequence of automorphisms θk ∈ Aut(N ) such that ‖θk(x)y − yθk(x)‖2→ 0 as
k→∞ for all x, y ∈ N . This means that (θk(x))k ∈ N ′ ∩ Nω for all x ∈ N . As in the
previous proposition we have (θk(x))k ∈ Pω for all x ∈ N and all 1≤ i ≤ n. This implies
that of every (yk)k ∈ Mω we have that limk ‖θk(x)yk − ykθk(x)‖2 = 0 for all x ∈ N . Since
the automorphisms θn are τ -invariant we obtain that limk ‖x8k(yk)−8k(yk)x‖2 = 0 for
all x ∈ N , where 8k = θ

−1
k . Thus 8k(yk) is an asymptotically central sequence, so by the

same argument as before we have that (8k(yk))k ∈ Pω for all (yk)k ∈ Mω. Thus for all
(yk)k ∈ Mω we have

lim
k→ω
‖EP (8k(yk))−8k(yk)‖2 = 0. (4.20)

Next we show that this is will lead to a contradiction. Since P is amenable then for each
k ∈ N no corner of 8k(M) can be intertwined in the sense of Popa into P inside N , [34].
Thus by [34, Theorem 2.3] for each k ∈ N there exists a unitary uk ∈ U(M) such that
‖EP (8k(uk))‖2 ≤ 1/k. Since uk is a unitary then using this in combination with (4.20)
we have that

1 = lim
k
‖8k(uk)‖2 ≤ lim

k
(‖EP (8k(uk))‖2 + ‖8k(uk)− EP (8k(uk))‖2)

≤ lim
k
(1/k + ‖8k(uk)− EP (8k(uk))‖2)= 0,

which is a contradiction. �

5. Further remarks
5.1. Thompson’s groups F, T, and V. Around the mid 1960s Richard Thompson
considered three groups of piecewise linear bijections of the interval preserving the dyadic
rationals which he denoted F , T , and V .

These groups have being intensively studied ever since as they display intricate
algebraic and analytic properties which provide critical insight into various problems in the
theory of discrete groups. For instance V , T , and the commutator of F are rare examples
of infinite, finitely presented, simple groups. It is well known that T and V are non-
amenable as they contain a copy of the free group with two generators. A long-standing
open problem formulated by Geoghegan in the late 1970s asks whether F is amenable.
(We point out that it is not even known whether F is exact.) A negative answer would
provide a new (finitely presented) counterexample to the famous von Neumann conjecture
stating that a discrete group is amenable if and only if it does not contain a copy of the free
group with two generators. This conjecture was famously disproved by Ol’shanskii [24]
and Ol’shanskii and Sapir in the finitely presented case [25].

In connection to this, Jolissaint was able to prove that F is inner amenable (even that
L(F) is a McDuff factor), [17, 18].
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QUESTION 5.1. Are the groups V and T inner amenable?

A possible approach to the question, at least in the case of V , follows from the work of
Farley [10] who showed that there exists a proper 1-cocycle c : V → `2(V/V0) where V0

is the subgroup of V which acts by the identity on the interval [0, 1/2). If one could show
that the group V0 is not co-amenable in V then Theorem 4.5 above would automatically
give that V is not inner amenable. However, we are not able to determine whether V0 is
co-amenable in V .

After the first author posed this question at a conference, Uffe Haagerup and Kristian
Olesen realized that the methods they had recently developed to show that V and T
generate non-Gamma factors could be generalized to show that T and V are not inner
amenable, [11]. We remark that their techniques are completely different from the method
suggested above, relying on a non-trivial combinatorial analysis of the commutators of a
particular non-amenable subgroup 3< T < V .

5.2. Central sequences and simplicity of group C∗-algebras. In [44], the author poses
the question of whether the reduced C∗-algebra of an i.c.c., countable, discrete group
0 is simple if the group has positive first `2-Betti number. In light of the fact that,
by [8, Theorem 8.12], C∗-simplicity is known for groups admitting a non-degenerate
hyperbolically embedded subgroup, we propose that this ought to be true in the following
more general context.

QUESTION 5.2. If 0 is an i.c.c., countable, discrete group satisfying condition NC, is
C∗r (0) simple?

By the work of Akemann and Pedersen [1] C∗-simplicity of an i.c.c. group is equivalent
to the non-existence of certain central sequences in C∗r (0). Let 0 be an i.c.c., countable,
discrete group. Recall, a central sequence in C∗r (0) is a bounded sequence (zn) such that
‖xzn − zn x‖∞→ 0 for all x ∈ C∗r (0). A central sequence is said to be trivial if there exists
a sequence of scalars (cn) such that ‖zn − cn1‖∞→ 0. A central sequence is (zn) is said to
be summable if each zn ≥ 0 and

∑
n zn = z ∈ L0, where the sum is understood to converge

in the strong topology. It is important to note though L(F2) does not have property Gamma,
C∗r (F2) is rife with non-trivial central sequences [1, Theorem 2.4]. However, C∗r (F2) has
no non-trivial summable central sequences as a consequence of [1, Theorems 3.1 and 3.3].

It would be highly interesting to investigate whether any C∗-algebraic ‘rigidity’
techniques can be developed which, similarly to the von Neumann algebraic techniques
used above, could be used to rule out the presence of summable (norm) central sequences.
Specifically, it would be interesting to know whether ‘spectral gap’ type phenomena exist
at the C∗-level. Take the following concrete situation: 0 is a non-amenable countable,
discrete group, 0y X is a Bernoulli action, and B := L∞(X)or 0 is the reduced crossed
product. Suppose that xn is a positive, summable sequence in B such that ‖axn − xna‖
→ 0 for all a ∈ C∗r (0). Is it the case that there exists a sequence x ′n ∈ C∗r (0)⊂ B so that
‖xn − x ′n‖→ 0?
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