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Basic Definitions, Properties and Theorems SIS EMTIEIE

The Noncommutative Space

Let

@ R be a commutative ring with identity,
@ M be an R-module, and

o M™" be the module of all n x n matrices with entries from M.

Define the noncommutative space over M to be

[e}

Mnc = I_l Mnxn

n=1
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Matrix Operations

The following operations on matrices over M and R can be defined:
@ Sum: For X, Y e M™",

o—— nxn
X +Y =[x+ yjlijo1,..n € M

@ Direct Sum: For X e M™" and Y € M™™

. X 0 (m+n)x(m+n)
XPY:= [ 0y ] eM

@ Ring Actions: For X e MP*9, T e R™P and S e R9*b,

j=1,...q j=1,...b

p q
TX := |:Z t,-kaj:I XS = |:Z x,-kskj]
k=1 k=1

i=1,...r i=1,...p
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Matrix Operations

@ Kronecker Product: For S € RP*7 and T € R™™, we define
SeT=[s TV e e RWm.

i=1,...,
@ Generalized Matrix Product: For R-modules Ni, N3, Z1 e N0*™,
1
7% ¢ NF¥™ integers s1, s, such that ny = symy and np = s,m> and the tensor
product N7t @ N5V,

az=1,...,mp
1 2. 1 2
Zso,sz O VARS I:(Zso,sz Os z )0‘0@2]0(0:1 oo

Where,

my

1 2 _ 1 2

(250752 Os; 4 )ao,az - Zl Zao,m ® Zahaz
1=

Leonard C. Stevenson (Drexel University) Higher Order Noncommutative Functions NonCommutative Analysis, June 2016 4 /56



Noncommutative Sets

For Q c M,
o Q,:=QnM™"
e Q is a noncommutative set (nc set) if

XeQ,,YeQ, = XoYeQum

o Q is right admissible if
XeQ,YeQnZe M™" —

3reGI(1,R) s.t. )o< rZ

Y € Qn+m
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Basic Definitions, Properties and Theorems SIS EMTIEIE

The Similarity Envelope

Define,

Q:={SXS! | XeQ,,SeGI(n,R),neN}

to be the similarity envelope of .

Proposition

If Q€ M is a right admissible nc set, then so is its similarity envelope Q.
Moreover, for any X € Q,,Y €Q,, and Z € M"™™, one has

X Z] «
[0 V:lEQn+m
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Definition of Noncommutative Function

A function f: Q — Npc s.t. £(Q,) SN™" for n=1,2,...is called a
noncommutative function if

o f respects direct sums:

XeQYeQm = F(XPY)=Ff(X)af(Y)

o f respects similarities:

X e, SeGl(nR)st. SXS71eQ, = F(SXS7!)=5F(X)S™?
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Basic Definitions, Properties and Theorems SIS EMTIEIE

Examples of Noncommutative Functions

Consider the matrix polynomial f(X) = X2. In this case,

|

0
14
_[X2 0]_[f(X) 0 ]
o Y2 Tl o f(Y)

f(SXS™1) =SX(S1S)XS 1 =5X?57t = 5F(X)S7!

8 /56
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Basic Definitions, Properties and Theorems SIS EMTIEIE

Examples of Noncommutative Functions

@ All polynomials and rational expressions in d matrices over R.
@ Formal power series of matrices over R.

Q Let /: M — N be a linear mapping. Define L: M™" - N™" by

L([xjlij=1,n) = (X)) Jij=1,0m

Then, L: Mp. = N, is a noncommutative function.
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SESTNIINHER BN SN EIl  The Difference-Differential Operator and its Properties

The Difference-Differential Operator

Let f be a nc function on a nc set Q. For any X €Q,, Y € Q,, and any Z e M™™

such that [ )O< f, ] € Qpem, define Agf(X,Y)(Z) by

f([ X Z ])_[ f(X) Arf(X,Y)(2)
o Y |) | o £(Y)

Proposition

Take any nc function f on a right admissible, nc set Q. Then, Agrf(X,Y)(Z),
can be extended to a function linear in Z on the R-module M"™™.
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The Difference-Differential Operator and its Properties
Difference-Differential Operator Examples

Q If f(X) = X2, then

(R NHR ERIRE Ry

Thus, Arf(X,Y)(Z) = XZ + ZY.
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The Difference-Differential Operator and its Properties
Difference-Differential Operator Examples

@ If f is a polynomial of the form

n
Z a,-X",
i=1

then

ARf(X,Y)(Z) = aiX"tzy" .
i=1

@ For the extension of the linear function defined above

ARL(X,Y)(Z) = L(2).
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The Difference-Differential Operator and its Properties
Difference Formula

Theorem

Let f: Q — N, be an nc function where Q is a right admissible nc set. Then, for
allnmeN, all Xe€Q,, YeQ, and S e R™™ we have

SF(Y) - F(X)S = Arf(X, Y)(SY - XS)

and, in the special case that n=m and S = I, we get,

Arf(Y, X)(Y = X) = F(Y) - £(X) = Arf(X, Y)(Y - X)

Leonard C. Stevenson (Drexel University) Higher Order Noncommutative Functions NonCommutative Analysis, June 2016 13 / 56



The Difference-Differential Operator and its Properties
Difference Formula

For our function f(X) = X2, the difference formula looks like,

SF(Y)-f(X)S=SY?-X?5=XSY - X?S+SY? - XSY
= X(SY = XS) +(SY - XS)Y = Apf(X,Y)(SY - XS)

Or in the case that S =/ and X and Y have the same size,

F(Y)-Ff(X)=Y2-X2=XY-X?+Y?-XY
=X(Y =X)+ (Y =X)Y = Agf(X,Y)(Y - X)
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The Difference-Differential Operator and its Properties
Properties of the Difference-Differential Operator

The Difference-Differential Operator has the following properties with respect to
direct sums,

/ " Z’ A f(X,> Y)(Z,)
Apf(X'® X ,Y)([ z" ]):[ A:f(X”, Y)(Z")

ARfFX,Y' @Y ([ 22 27 ])=[ Arf(X,Y')(Z') Drf(X,Y")(Z") ]
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The Difference-Differential Operator and its Properties
Properties of the Difference-Differential Operator

For our function Agf(X,Y)(Z)=XZ+ ZY,

ARf(X' @ X", Y) ([

Leonard C. Stevenson (Drexel University)

ZI
ZII
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-]

[ xX'7’

X0 z' z'
0 X" Z + z" Y
z'y
X"z + 7"y
X'Z'+2Z'Y
X"7"+ 7Y

[ ARF(X',Y)(Z")
| ARF(X”,Y)(Z7) ]
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The Difference-Differential Operator and its Properties
Properties of the Difference-Differential Operator

and

ARf(X7 Y,GB YI/)([ z' 7" ])

0 YII
[ XZ/ XZ// ]+[ Z/y/ Z//y// ]

[ XZ'+2'Y XZ'"+Z"Y" ]

[ ARf(X,Y')N(Z') Drf(X,Y")(Z") ]

=X[ 2 z']|+] Z Z”][Y/ 0 ]

Leonard C. Stevenson (Drexel University) Higher Order Noncommutative Functions NonCommutative Analysis, June 2016 17 / 56



The Difference-Differential Operator and its Properties
Properties of the Difference-Differential Operator

The Difference-Differential Operator has the following properties with respect to
similarities,

Arf(TXT L Y)TZ) = TARF(X,Y)(2)
ARf(X,SYS™H)(Z5™Y) = ARf(X,Y)(2)S™

Leonard C. Stevenson (Drexel University) Higher Order Noncommutative Functions NonCommutative Analysis, June 2016 18 / 56



The Difference-Differential Operator and its Properties
Properties of the Difference-Differential Operator

For our function Arf(X,Y)(Z) =XZ+ ZY,

Apf(TXT L Y)NTZ) = (TXT ) (TZ) +(T2)Y
=TXZ+ TZY = T(XZ+ ZY) = TARF(X, Y)(2)

and

Arf(X,SYS™)(Z2571) = X(Z5 ) + (Z571)(SYs™)
=XZSt+ZYS™t = (XZ + ZY)S = Arf(X,Y)(2)S7!
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Difference-Differential Operator for Higher Order NC Functions
Higher Order NC Functions

A function f for which
f(XO, o ,Xk) :Nlnoxnl x .. XN:k_lxnk = Nongxnk

is a k-linear mapping over R is an nc function of order k if
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Difference-Differential Operator for Higher Order NC Functions
NC Functions Respect Direct Sums

f respects direct sums:

P 4

FXY, XY, ..., X5 Zl',z2,...,zk) (1)
FOXO", X, Xk zl",z’z,...,zk)
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Difference-Differential Operator for Higher Order NC Functions
NC Functions Respect Direct Sums

FXO,... . XL X e X" XM XK

. S G+1)’ )
(zl,...,ZJ—l,[ z' zi ],[ §o+1>" ],Zf+2,...,Zk)

= F(XO, . X X XL xR (zl,...,Zf—l,zf',z<1'+1)',zf+2, . .,zk)
+F(XO, X X X0 xR

(zl, U 3 L MG zk)
(2)
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Difference-Differential Operator for Higher Order NC Functions
NC Functions Respect Direct Sums

and
FOXO,. . XA XK e XKy (28,25 z¢ Z+" ])

- row[f(XO, L XEUXKYZY, Lz 29 3)
FOXO, ... XKL XK'\(ZY,..., 25, z"")]
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Difference-Differential Operator for Higher Order NC Functions
NC Functions Respect Similarities

o f respects similarities:

F(SoXOSyt, XY, . .. XM (S22, Z22,...,25%)

Leonard C. Stevenson (Drexel University)

= Sof (XO,... . XM (ZY,..., 7N,

FXO, X S XISTH X LX)
(2., 27025 70 777, L ZF)

= F(X°,... . X*\(Z...,Z5)

F(X0,... XKL s xks Y (24, Z22,...,ZFs )

= (X%, X*\(ZY,...,Z")8, 1
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Difference-Differential Operator for Higher Order NC Functions
Order of an NC Function

By this definition Agf(X,Y)(Z) is a first order function while f is considered a
zero order function. In general, let

Tk(Q(O)a .- '7Q(k);N0,nC7 ce ;Nk,nc)

be the set of all nc functions of order k.
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SESTIINICHERLEBGIE N IS Difference-Differential Operator for Higher Order NC Functions

Generalization of Direct Sum

Proposition
Let

o]
a,fla=1,...,mj_y

. m;j . .
X=@x, Z=[Z)5m
Dtj=1 ’
Then,

f(XO, ... ,Xk)(Zl’ . .,Zk) _ [foc,ﬁ]gzl,.“,mk

1,....,mo
where,
a,B _ ( (0%} kak)( lag,0n kak—hak)
FoP = S (X0, XKy (Zoen 7
a;=1,...,m;
apg=a,ap=48
y
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Difference-Differential Operator for Higher Order NC Functions
Generalization of Direct Sum

Consider the function, f(X° X1, X?)(Z}, Z%) = Z* X1 Z2, we find,

0 h 1 2
Xl X]. Xl
f : L e ,
Xl‘ng B Xml sz
1 1 2 2
le Zl,ml le Zl,mz

: - : s : - :
1 1 2 2
Zmo,l Zm0>m1 Zm171 Zml,m2
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Difference-Differential Operator for Higher Order NC Functions
Generalization of Direct Sum

1 1 1 2 2
Zy o L, Xi Zi o L,

1 ' 1 ' 1 2 ) 2

| Zmo,l Zm07m1 Xm1 Zm1,1 Zm1,m2
F 1yl 2 1 1 72 1 yl72 1 1 72
I XiZi+ o+ Ly X L1 2 XiLimy ot L X 4

m my,mz

1 172 L1 1 72 " 152 ’ 1 1 -2
-mele Zh++ Z Xmlzmhl mele Zl,mz e+ Z Xmlz

mo,my mo,my my,mz
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Difference-Differential Operator for Higher Order NC Functions
Generalization of Direct Sum

«y,m

Zoq IZ]. Ozlxolélz(,zvl,l o Zoq IZ]. Ozlxl ZZ
St ZmpnXarZays v Lona1Za Xl Z

mp,o mo,Q1 Qq,Mm2

Which is a matrix where each entry has the form,

m
Z f(Xgoﬂ X01417X2 )(Zgzo oy Zil,ocz)
Ct1:1
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Basic Definitions, Properties and Theorems Difference-Differential Operator for Higher Order NC Functions

Generalized Matrix Product

Our k-linear maps,

(28, 7" - F(XO, .. XM\ (2, ..., Z5)

can also be written as linear maps on the corresponding tensor product, defined
on elementary tensors as,

7'®.. 7K (X% ... XNZ'e...0Z"
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Difference-Differential Operator for Higher Order NC Functions
Generalized Matrix Product

We recall,

ak=1,...,mk

k k
ZL O s @5y Z [(Z Osy -+ seavse D5y Z°)

50,52 50,52 ’

a07ak]a0:1,...,m0

where,

(ZL o Osvgns @5 Z¥) = Z Zr 0 ®...0Zk

50,52 0,0 QUk—1,0tk
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SESTIINICHERLEBGIE N IS Difference-Differential Operator for Higher Order NC Functions

Rewriting Direct Sum Rule for Identical Summands

Proposition
Given,

mj i
X =@ VY, forj=0,... k

Oéj:].
we rewrite the function as follows:
FXO, . XINZY ., Z5) =2 O s @5y ZXF(Y0, Y5,

where f(Y?, ..., Y¥) acts entrywise on Z} _ O, .. .5 ;.5 Os_, Z*.
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Difference-Differential Operator for Higher Order NC Functions
Rewriting Direct Sum Rule for Identical Summands

For our function Agf(X%, X1, X?)(Z},22) =772, if X° X! and X? are direct
sums of YO, Y1 and Y2, then, as calculated above,
Yo y! y?

yO ; Yl ; Y2

1 1 2 2
Zy o L, Zi o L,

. ‘. N P . ‘. .
1 1 2 2
zL, o Z 22, - Z

mo,m my,mz
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Difference-Differential Operator for Higher Order NC Functions
Rewriting Direct Sum Rule for Identical Summands

Z f(YO Yl Yz)(zl ,o1) al,l)

a11

Z Yo vt Y2)( Zno o Za

Q1= =1 anma
2 YLV, 0 22, )
al

2
® Ziy m

3 (Y0, ¥ Y2)

( mo,01
| v1=1

Leonard C. Stevenson (Drexel University)
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Z f(YO Yl Y2)(Zl ,o1)

a1 mz)
1= 1

S F(YO YL, Y2)( s Loy ms)

Q1) Tag,my
1= 1

Z Yo, v Y2)(Z1 al@Zz

a1, m2)
1= 1

Z f(YO vyl Y2)( m0a1®Z2

a1, )
ar=1
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Difference-Differential Operator for Higher Order NC Functions
Rewriting Direct Sum Rule for Identical Summands

2
z Zl Neil ® Zal,l

011—

Z ® Z2

mo (o] a,Mm

1
Z11 Zl,m1

Zl Zl
mo,1

mo,my
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Z ZI,J“@Z2

ol Qg ,mp
FOYe, vl y?)
Z mo (%) ® Z(il my
zy o
S : F(Y°, Y Y?)
2371’1 vee 72

my,mz

(Z mpm @m, Z2)F (YO, Y1, Y?)
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Basic Definitions, Properties and Theorems Difference-Differential Operator for Higher Order NC Functions

Higher order Difference-Differential Operators

We extend the difference-differential operator to higher order functions as follows,

Proposition

Let f e Tk(Q(O), . .7Q(k);-/\[0,ncv s 7Nk,ﬂC)'

0 1’
(] X ZO XYL XK Zl,, 72,2k
0 X Z

FXO XY, XMZY, 22,25
+o Apf(XY XY XY, ... XM\ (z,ZV',72...,Z")
FXY XY, Xk (ZY, 22,0, Z5)
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Difference-Differential Operator for Higher Order NC Functions
Higher order Difference-Differential Operators

Proposition
F(XO,... X/ X/ Zo1xm X5
b ) b 0 X‘l ) b b
. Y +1)’ .
(zl,...,ZJl,[ Z Z ],[ §0+1)” ],zW),...,Zk)
= F(XO, .. XL X X X2, Z070 20 Z0Y 7GR 7R
+ ARF(XO,.. XL X' X" XD XK
1 j-1 7 U+1)" 7(+2) k
(Z4,..., 27 20 7, zG*D)" Z7G+d) 7K

+ (X0, XL X X XY (2L 2 2 ZGHYT ZGR) 7

v
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Difference-Differential Operator for Higher Order NC Functions
Higher order Difference-Differential Operators

Proposition

O Xk”
- [f(xo, L XEL XK (YL 2R 2K,

WARfF(XO, .. XKL XK XK'Y(ZY,...,ZK1, ZK | Z)
+HF(XO, .. XKL XK (Z, .. Zk T ZK

k/
f(XO,...,X“,[ X s ])(Zl,...,Zkl,[ z¥ zZK )

.
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Basic Definitions, Properties and Theorems Difference-Differential Operator for Higher Order NC Functions

Higher order Difference-Differential Operators

As an example, consider the function f(X°, X1, X2)(Z}, Z2%) = X°Z1 X172 X2,
Then,

0 1’ 0 1
f X ZON ,X17X2 lel ,Z2 = X ZOH le/ )<122)<2
0 X Z 0 X z
X7V zzV" 1722 XY ZV X1 72X2 + 77V X1 72 X2
B B X" 7V X172 X2
FXO XY, XM ZY, 22,25
+o Apf(XY, XY XY, ... XM\(z,Z2V',Z2...,Z")
FXY XL, Xk (2, 22, .., Z5)

Thus, 0Arf(X?, XY X, X2)(Z,Z2Y",Z%) = 77V X1 72 X2.

Leonard C. Stevenson (Drexel University) Higher Order Noncommutative Functions NonCommutative Analysis, June 2016 39 /56



Difference-Differential Operator for Higher Order NC Functions
Linearity of the Image of ;Arf

As for order 0 nc functions,

Proposition

For any nc function f on a right admissible, nc set €2,
JARF(XO,.. X7 XI X XU LX), can be extended to a linear function

"

on the R-module M;j i
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The Taylor-Taylor Formula Difference Formulae for Higher Order NC Functions

Difference Formulae for Higher Order NC Functions

Proposition

Let f be an nc function on the nc set Q©® x ... x Q(k),
then,

FXO,... . X2 ....Z5) - F(Y°,...,YN(Z, ..., Z5
k
= 3 ARF(YO Yo X L X5

041=0

(ZY,..., 70, X —yea zoaxl 7K,
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Difference Formulae for Higher Order NC Functions
Difference Formulae for Higher Order NC Functions

Applying this to the function, f(X° X1)(Z%) = X0z X1,
(X - YOZ XL+ YO ZY (X - Y = XOZP X - YO Z X 4 YO Zi X — YOzt v

_ XOzlxl _ YOzlyl
= F(XO, XI)(ZY) - (Y0, YI)(ZY)
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Iterated Difference-Differential Operators
Iterated Difference-Differential Operators

Recall that we found that for
F(XO, X1, X?)(Z4,2%) = X°Z' X1 Z2° X2,
oARF(XY, XY XY, X\ (2,ZY,7?) = zZV" X 22 X2,

If we want to find {ArgARgf, should we take the derivative in the new position 1
or in the old position 17

Since X% does not appear in the expression and X! does, it is clear that these
will give different results.
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Iterated Difference-Differential Operators
Iterated Difference-Differential Operators

We define,

A'r= Ag... AR for 0<j<k

Thus, J‘AIR is calculated iteratively using 2 x 2 block upper triangular matrices.

Alternatively, it can be calculated in a single step.
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LLCREVSEEVTA S TEN  Iterated Difference-Differential Operators

Iterated Difference-Differential Operators

A necessary condition for integrability,

Theorem

Let g e TH(QO, ..., Q(k);J\fo,nC, <o s Ni ne) with QY a right admissible nc set for
allj=0,...,k. Letf:jAﬂ?g. Then, ;Arf = nArf form=j,....j+1.
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Iterated Difference-Differential Operators
Iterated Difference-Differential Operators

Coming back to our question from earlier, we now see that to find {AgoAgrf, we
should take the derivative in the old position 1.

With this in mind, we define some new notation.
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New Notation

Applying jAg to F(XO,...,X*)(Z,...,Z"), we now write
JARF(XO, . XL XE X X2 2N 2 7R
where N o
X' = (X3, X{)

and
21 = (200, 70ty

If all entries of X’ are the same, X/, denote it as X/.
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The Taylor-Taylor Formula The Taylor-Taylor Formula for nc Functions

Taylor-Taylor Formula for Higher NC Functions

Theorem

For f e TH(Q©® x ... x QK N e, ..
arbitrary integer N,

F(X°,..., X2, ..., 25

.+Ni.nc), ag the last nonzero «j and an

N —~ —~
=3 A% G ARFA(YO L YR

p=0 cg+...+a,=p
(XO— YO, ZL XLy, ZK XK YR
S A% G ANF(YO, YT Ya X9 k)

ag+...+a=N+1

(X0 YO, 7L X1y, . ZK Xk _ YKy,
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The Taylor-Taylor Formula The Taylor-Taylor Formula for nc Functions

Alternate Taylor-Taylor Formula

It is also possible to write the Taylor formula centered at

(Y%...,YK) e ngo) XX ngk) where for all j n; = m;s; for some positive integers
m;.

Theorem

Let f e TH(QO® x ... x Q" N ney -, Nine), for each N €N, ag the last
nonzero o and using the difference formula for higher order nc functions,
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The Taylor-Taylor Formula for nc Functions
Alternate Taylor-Taylor Formula

Theorem

X0, X2, ...,Z29

Qs 0 Qg 1

X 0 /R VO 0 1A vl
= Z Z X'-@DY 09997 5,50 | X - P Y 51,5 Oy
1=0 g+ +a=N Bo=1 B1=1
@skak
K kA vk
“seea,se Oy z Sk-1.5¢ Osi X" - @ Y
Br=1

WA oADF(YO YR
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The Taylor-Taylor Formula for nc Functions
Alternate Taylor-Taylor Formula
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Current Research

| am currently studying the integration of nc functions in joint work with Dr.
Victor Vinnikov and Dr. Dmitry Kaliushny-Verbotvetskyi. We have shown that as
long as the modules involved are over rings of characteristic 0, then the necessary
condition that jAgrf = ,Arf for m=j,...,j+ 1, established above is also
sufficient.

We have partial results in the case of finite characteristic.
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