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Paley-Wiener Space

PW,. consists of f which are:
Q entire;

@ square integrable
/\f(t)|2dt < o0
R

@ exponential type 7, i.e. for all € > 0,

1f(2)| < Celm+lzl,
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Paley-Wiener Theorem

Theorem (Paley-Wiener, ~1930)

If f € PW,, then there exists a g € L?[—~1/2,1/2] such that

1/2 ‘
f(2) = / g(t)e >t
—1/2

Colloquially,
11
PW, = L2[-=, =]
[ 272
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Shannon-Whitaker-Kotelnikov Sampling

Theorem (Whitaker 1929, Shannon 1949, Kotelnikov 1933)
If f € PW,, then for all x € R,

Z F(n sm n))

poert 7r(x —n)

The convergence takes place both uniformly as well as in the mean.

Note:

1/2 )
/ 727rmtdt
/2
= (g

(t) e2mnt>

()
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The Sampling Problem

Definition

A sequence {\,}nez C R is a sampling sequence for PW,, if there exist A, B > 0
such that for all f € PW,,

AlIfI? < Y IFOW)P < BIIFIE.

Question: which sequences are sampling sequences?
Reconstruction: if {\,} is a sampling sequence, then there exists {h,} C PW,

such that
f(x) = Z f(An)hn(x).

Eric Weber Sampling in de Branges Spaces of Entire Functions



The Interpolation Problem

Definition

A sequence {\,}ncz C R is an interpolating sequence for PW,; if for every
(cn) € £%(Z) there exists an f € PW, such that f(\,) = c,, and ||f| =~ [[(c,)|-
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Frames

Duffin and Schaeffer, A Class of Non-Harmonic Fourier Series, 1952

Definition

For a Hilbert space H, a sequence {v,} C H is a frame if there exist A, B > 0
such that for all v € H,

AllvIZ <D Kv, v < Bliv].

For PW;., {An}ns is a sampling sequence if and only if

is a frame.
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Beurling Density

For a sequence {)\,} C R, the lower and upper Beurling density are given by:

D_({A\n}) = liminf inf #{A N (x = r,x471))

r—oo xeR 2r ,

D+({/\n}) = lim sup sup #({)‘n} N (X —r,x + r))
r—oo x€eR or
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Landau Inequalities

Theorem (Landau, 1967)
Q If{\,} is a sampling sequence for PW,., then
1< D_({An}) < Dr({An}) < oo

If1 < D_({An}) < Di({An}) < o0, then {\,} is a sampling sequence for
PW;.

(2]
Q If{\,} is an interpolating sequence for PW,., then D, ({\,}) < 1.
Q If DL ({\s}) <1, then {\,} is an interpolating sequence for PW,..

@ Interpolating sequences can also be characterized by the Carleson criterion.

o Complete interpolating sequences are characterized by the
Hruschév-Nikolskii-Pavlov theorem.
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Solution to the Sampling Problem

Theorem (Ortega-Cerda and Seip 2002)

A sequence {\,} is a sampling sequence for PW,. if and only if there exist entire
functions E, F such that
Q for all z € UHP, |E(Z)| < |E(z)| and |F(Z)| < |F(2)
Q@ H(E) ~ PW,;
@ {\,} is the zero sequence of EF + E*F*.

’

@ E and F are Hermite-Biehler class, HB;

@ H(E) is the de Branges space generated by E;
Q@ E*(2) = E(2).
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de Branges Spaces

For E € HBB, define

E(w)E(2) — E()E*(2)

Ke(w,z) = 2ri(w — z)

This is a positive matrix (Moore-Aronszajn) and so generates a RKHS: H(E).

H(E) consists of all entire functions f that satisfy:

f(t)
f|2 ::/ | dt < oo,
Ille r |E(t)[?

Q for all z € C,
If(2)| < Ke(z, 2)|If e
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Paley-Wiener, again

—iTz.

Example: E(z) = e

Ke(w,z) = %

Thus, H(e~'™?) = PW,, both as sets, and as Hilbert spaces.
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Phase Function

For E, we define ¢ : R — R such that x € R,
|E(x)| = e*™E(x).
The function ¢ is C!, unique up to additive constant, and

oy TK(x,x)
P =g =°

so is increasing.
Example: for E(z) = e™'™, o(x) = 7x.
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Zeros of the Kernel

Sequences that satisfy the condition
o(Ap) =7mn+ «
for some « correspond to zeros of K.
Example: E(z) = e~'™%, then {)\,} = {n+ a} for some a € [0, 1].

These are the zeros of the translations of the sinc function, and also correspond to
the frequencies of orthogonal exponentials on [-1/2,1/2].
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Shannon’s Sampling Theorem in de Branges Spaces

Under suitable conditions, for f € H(E), f(z) =), 4 f(%)ﬁ
ny )l

Theorem (de Branges, 1960)

Let H(E) be a de Branges space with phase function ¢(x), and let o € R. If
I = {Vn}nez is a sequence of real numbers, such that o(v,) = a+7n, n € Z,
then the functions {K(7n,z)}nez form an orthogonal set in H(E).

If, in addition, e/®E(z) — e '*E*(z) ¢ H(E), then {Hﬁhﬁ}nez is an

K('Yn
orthonormal basis for H(E). Moreover, for every f(z) € H(E),
K(n, 2)
f(z) = f(vn) (1)
2 1K (v, JIE

n€Z
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Homogeneous Approximation Property

@ Ramanathan-Steger (1994)
@ Grdchenig-Razafinjatovo (1998)
@ Heil-Kutyniok (2002)

Theorem (al-Sa'di and W)

Let H(E) be a de Branges space such that the phase function of E(z) satisfies

0 <6 <¢'(x) forall x e R. Let {pn}ncz C R be a separated sequence such that
{ky,(2)}nez is a frame in H(E). Then given ¢ > 0 there exists R = R(e) > 0
such that for all y € R and all r > 0

sup Hkx() - Qy,r-&—ka(-)H <, (2)

[x=y|<r

where ky(z) = I\’;(();f))\l’ and the supremum is taken over x € R.

Qy.r+r is the projection onto the span of {k,, : |u, —y| < r+ R}.
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Comparison Theorem

Theorem (al-Sa'di and W)

Let H(E) be a de Branges space, and the corresponding phase function of E
satisfies 0 < § < ¢'(x) for all x € R. Suppose that M = {pn},T = {7y} CR are
two separated sequences, such that {k, (z)}ncz is a frame in H(E), and
{ky,(2)}nez is a Riesz basis for a closed subspace of H(E). Then for every e > 0,
there exists R = R(e) > 0, such that for all r > 0 and y € R, we have

L-et(TNly—r,y+r) <gMnly—r—R,y+r+R)).

Therefore,

D=(N) < D~ (M), and D*(I) < Dt (M)
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Necessary Densities of Sampling and Interpolating Sets

Let E € HB, with phase function satisfying 0 < 6 < ¢'(x), for all x € R. If
M = {untnez is a uniformly separated sampling sequence in H(E), then
D=(M) > 2.

Let E € HB, with phase function satisfying 0 < § < ¢'(x) < M < oo, for all
x € R. IfT = {vn}nez is a uniformly separated interpolating sequence in H(E),
then DF(I) < M.

We recover the Landau inequalities on PW/;.
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Toward Necessary and Sufficient Conditions

In general, density criteria are not valid in de Branges spaces (Lyubarskii and Seip,
2002).

Theorem (al-Sa'di and W; Baranov)

Let Eg € HB. If {\,} is a separated sampling sequence for H(E,), then there
exists two functions E, F such that

Q E.F e HB,

Q@ H(E,) ~ H(E),

@ {\,} constitutes the zero sequence of EF + E*F*.

Note: still only necessary condition.
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Naimark’s Dilation Theorem

Theorem (Naimark ~1930)

Let £ be regular, positive, B(H)-valued measure on Q2. Then there exists a Hilbert
space K, a bounded linear operator V : H — K, and a regular, self-adjoint,
spectral, (i.e. PVM) B(K)-valued measure F on Q such that for all measurable
sets S

E(S) =V "F(S)V.

Theorem (Han and Larson 2000)

If{va} C H is a frame, then there exists a Hilbert space K and a frame {w,} C K
such that {v, ® w,} C H® K is a Riesz basis.

The converse was observed in Aldroubi (1994).

Eric Weber Sampling in de Branges Spaces of Entire Functions



Embedding de Branges Spaces

We define Z : H(E) — H(EF) : f — fF; T is a linear isometry.

The mapping J : H(F) — H(EF) defined by g — gE* is a linear isometry.
Consequently, for every g1, 8> € H(F),

(g1E™, &2E™ ) er = (81, &) F- (3)
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Dilation of de Branges Spaces

The images of T and J are orthogonal in H(EF). Consequently,

H(EF) = FH(E) & E*H(F).

The following equation holds for the kernel Kgg:

Ker(w, 2) = F(W)[Z(Ke(w, ))I(z) + E(W)[T (Kr(w,-))](2). (4)
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Naimark Dilation of Kernel Functions

Recall: if {\,} is a sampling sequence in H(Ep), then there exists E, F € HB
satisfying conditions 1-3.

Theorem (al-Sa'di and Weber)

Suppose that {\,} is a sampling sequence for H(Ey). Suppose E,F € HB is
given by the Necessary Condition Theorem. Then H(Ey) can be embedded into
H(EF) such that the frame {Kg,(\n, )} is embedded into the Riesz basis

FOWIZ(Ke, (Any )I(2) o EOnII(Ke(An, )I(2)
KEF()\m)\n) KEF(>\na)\n) n
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Sufficient Conditions for Sampling

Theorem (al-Sa'di and Weber)

Suppose that Eq, E, F € HIB have no real roots such that H(Ey) ~ H(E), and
O S ¢ . Suppose {\,} satisfies the equation @er(A,) = nm + o for some
a € [0,7). Then the sequence {\,} is a normalized sampling sequence for H(Ep).

Idea: the kernel functions {Kgr(An, )} is a Riesz basis in the big space, so the
projection onto H(Ep) is a frame, hence corresponds to a sampling sequence
(though we need to normalize).
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Sufficient Conditions for Sampling (cont'd)

Assume the conditions of the previous theorem, if {\,} is the zero set of
EF + E*F*, then {\,} is a normalized sampling set for H(E).

Assume the conditions of the previous theorem; assume also that Kg,(x,x) ~ 1.
Then the zero set of EF + E*F* is a (non-normalized) sampling sequence for

H(Eo).
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Multiplexing of Sampled Signals

Corollary

Suppose E, F and {\,} satisfy the hypotheses of the previous theorem, with
f € H(E) and g € H(F). Given the samples {f(\,)} and {g(\,)}, f and g can
be reconstructed from the multiplexed samples as follows:

F(A\)Ke(An, 2)
KEF(>‘n7 >\n) (5)

E(An)Ke (O, 2)
Ker O An) ©)

f(z) = Z(f(/\ )JE(An) + 8(An)E*(Xn))

Z (FAn)F(An) + g(An) E*(An))

Eric Weber Sampling in de Branges Spaces of Entire Functions

v




The End
Thank you!
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