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Tracial states

If A is a C ∗-algebra then a tracial state on A is a state such that
φ(xy) = φ(yx) for all x , y ∈ A. We are interested in

(1) how to
define tracial states on C ∗-algebras and (2) how to be sure that our
methods bijectively describe all possible tracial states. In particular,
we are interested in the case of groupoid and graph C ∗-algebras.
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Tracial states: inclusions + conditional expectations

Our approach to studying tracial states assumes the following
initial data:

(1) an inclusion B ⊂ A of an abelian C ∗-subalgebra which is
non-degenerate (B contains an approximate identity for A)
and regular (the multiplicative and self-adjoint set
N(B) = {n ∈ A : nBn∗ ∪ n∗Bn ⊂ B} spans dense subset of A)

(2) a conditional expectation E : A→ B (a completely positive
linear bimodule map fixing B), which we will require to have
additional properties later on.

Note that n∗n, nn∗ ∈ B for any n ∈ N(B) if B contains an
approximate identity for A.
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Tracial states: state extensions

If φ : B → C is a state on B, then φ ◦ E is a state extension to A.

Question

For which states φ ∈ S(B) is the extension φ ◦ E a tracial state on
A? If S ′ is the set of such states, is the map S ′ → T (A) given by
φ 7→ φ ◦ E a surjection?
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Invariant states

Definition

If φ ∈ S(B) and n ∈ N(B), then φ is called n-invariant if
φ(nbn∗) = φ(n∗nb) for all b ∈ B. If N0 ⊂ N(B), then φ is
N0-invariant if it is n-invariant for all n ∈ N0. If φ is
N(B)-invariant we will call φ fully invariant

Example

If τ ∈ T (A) is a tracial state, then φ = τ |B is a fully invariant
state on B.

Under fairly mild assumptions the converse of the above example is
also true.
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Normalization of conditional expectations

Definition

Let E : A→ B be a conditional expectation. We say that E is
normalized by n ∈ N(B) if E(nan∗) = nE(a)n∗ for all a ∈ A.
(Similar for N0 ⊂ N(B).)

In the cases that we care about, the relevant conditional
expectations will be normalized by a set of normalizers that
generate A.
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Invariant states, part II

Theorem (C., Nagy ’15)

Suppose that B ⊂ A is a regular inclusion and E : A→ B is a
conditional expectation which is normalized by N0 ⊂ N(B). Then
for any N0-invariant state φ ∈ S(B), the composition φ ◦ E is a
tracial state when restricted to C ∗(B ∪ N0) ⊂ A.

Corollary

Suppose that E : A→ B is normalized by N0 ⊂ N(B) and φ is a
N0-invariant state on B, where N0 generates A as a C ∗-algebra.
Then φ ◦ E is a tracial state on A.
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Proof

Proof

We show that if E is normalized by n and φ ∈ S(B) is an
n-invariant state, then φ ◦E(na) = φ ◦E(an) for all a ∈ A, because
we can then use the fact that the centralizer of a state always
forms a C ∗-algebra.

It suffices to show

φ(E((nn∗)jna)) = φ(E(an(n∗n)j))

for any positive integer j , because we have the approximations

na = lim
k→∞

(nn∗)1/kna an = lim
k→∞

an(n∗n)1/k

and we can find suitable polynomials with zero constant term
approximating the k-th root function.
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Proof, ctd.

φ(E(an(n∗n)j)) = φ(E(an(n∗n)j−1)n∗n) (1)

= φ(nE(an(n∗n)j−1)n∗) (2)

= φ(E(na(nn∗)j) (3)

= φ(E((nn∗)jna) (4)

Here (1) follows because E is a conditional expectation, (2) from
the n-invariance of φ, (3) from the fact that n normalizes E, and
(4) follows from conditional expectation and commutativity of
B.
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Parametrizing the trace space

The previous result shows that if we have a conditional expectation
which is normalized by N(B), then there is a surjective map

res : T (A) 3 τ 7→ τ |B ∈ Sinv(B)

from the tracial states on A to the fully invariant states on B.

In
other words, every fully invariant state lifts to a tracial state on the
C ∗-algebra. The restriction map is affine and continuous.

Question

When is the restriction map injective? That is, for which inclusions
B ⊂ A is it always the case that any tracial state τ ∈ T (A) is fully
determined by its restriction to B?
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The extension property

Definition

A non-degenerate inclusion B ⊂ A is said to have the extension
property if every pure state φ ∈ P(B) has a unique extension to a
state on A (which must then be pure).

If an inclusion has the extension property one automatically
obtains a conditional expectation E : A→ B, so these inclusions
fall within our framework.

Proposition (C., Nagy ’15)

If B ⊂ A is a non-degenerate inclusion with the extension property,
then the restriction map carrying T (A) to Sinv(B) is injective.
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Proof of proposition

Proof.

By a result of Archbold [1], if B ⊂ A has the extension property,
the kernel of the associated conditional expectation E : A→ B is
spanned by the commutators {ab − ba : a ∈ A, b ∈ B}.

A tracial
state vanishes on any commutator, hence any tracial state factors
through the conditional expectation onto B, i.e. τ = (τ |B) ◦ E.
Thus the restriction map from T (A) to Sinv(B) is injective.

Remark

We do not claim that the tracial state space is non-empty in this
case (there are examples of inclusions with the extension property
where T (A) = ∅). Also, there are cases of inclusions without the
extension property for which τ 7→ τ |B is still injective (for example,
C ⊂ C ∗r (F2)).
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Étale groupoids

A groupoid consists of a set G equipped with the following:

(i) a set G (2) ⊂ G × G of composable pairs

(ii) a composition operation ◦ : G (2) → G which is associative
(αβ)γ = α(βγ) whenever one is defined;

(iii) an involutive inversion operation α 7→ α−1 such that
(α, α−1) ∈ G (2) for all α and α−1αβ = β and γαα−1 = γ
whenever the composition is defined.

Sometimes elements of G are called morphisms or arrows, as an
alternate definition of a groupoid is as a small category with
inverses.
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Units

There isn’t a distinguished identity element in the definition of a
groupoid.

Definition

An element u of a groupoid G is called a unit if it satisfies u = u2.

For any element α of G , the compositions s(α) := α−1α and
r(α) = αα−1 are units referred to as the source and range of α.
The set of all units is denoted by G (0) ⊂ G .
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Étale groupoids

A topological groupoid is one that has been equipped with a
topology so that the operations become continuous. Henceforth
our groupoids will be assumed to be Hausdorff, locally compact,
and second countable.

Definition

An open bisection B ⊂ G is an open subset of G such that r |B and
s|B are both homeomorphisms onto open subsets of G . A
topological groupoid G is étale if it has a basis for its topology
consisting of bisections.

Étale groupoids turn out to be the appropriate generalization of
discrete groups/discrete dynamical systems to the groupoid
context.
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C ∗-algebras of étale groupoids

The set Cc(G ) of continuous complex functions with compact
support on G forms a ∗-algebra under the pointwise vector space
operations, and convolution and involution given by

(f ∗ g)(γ) =
∑
αβ=γ

f (α)g(β) f ∗(γ) = f (γ−1).

We can complete Cc(G ) under the reduced norm

||f ||r = sup
u∈G (0)

||πu(f )||

where πu is the representation on `2(s−1(u)) given by
πu(f )δγ = f ∗ δγ for γ ∈ s−1(u). The abelian C ∗-algebra C0(G (0)

is contained in C ∗r (G ) as the completion of Cc(G (0) ⊂ Cc(G ).
There is a conditional expectation Ered : C ∗r (G ) 7→ C0(G (0))
extending restriction Cc(G )→ Cc(G (0)).
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Bisections and balanced measures

Any n ∈ Cc(G ) whose support is contained in a bisection is a
normalizer of C0(G (0)). Such n are called elementary normalizers.

Definition

Let µ be a Radon probability measure on G (0) and let B ⊂ G be
an open bisection. Then µ is called B-balanced if for every
compact subset K ⊂ G (0) we have µ(BKB−1) = µ(s(B) ∩ K ). We
call µ totally balanced if it B-balanced for every open bisection B.

If µ is a totally balanced measure then the corresponding state φµ
on C0(G (0)) will be n-invariant for every elementary normalizer n.
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Balanced measures and tracial states

Let G be étale. If τ is a tracial state on C ∗r (G ), then the
restriction τ |C0(G (0)) is a state on C0(G (0)), and the corresponding

measure µτ on G (0) is balanced.

The converse is true as well:

Proposition (C., Nagy)

Let G be an étale groupoid, let µ be a probability Radon measure
on G (0), and let φµ be the corresponding state on C0(G (0)). The
following conditions are equivalent:

(i) µ is totally balanced;

(ii) φµ is elementary invariant;

(iii) φµ is fullly invariant;

(iv) φµ ◦ Ered is a tracial state on C ∗red(G ).

(In particular this shows that τ 7→ µτ is a surjection onto the
collection of totally balanced probability measures.)
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Parametrizing the trace space

Question

When is the map τ 7→ µτ injective (and hence a bijection)?

Definition

A groupoid is principal if r(γ) = s(γ) implies that γ is a unit.
Equivalently if Iso(G )u = {u} for every u ∈ G (0).

Proposition

Let G be a principal étale groupoid. Then the map from T (C ∗r (G ))
onto the collection of totally balanced probability measures is a
bijection. Equivalently, the map µ 7→ φµ ◦ Ered is a surjection.
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Proof

Proof.

By a result of Kumjian, if G is principal then the inclusion
C0(G (0)) ⊂ C ∗r (G ) has the extension property. Thus the theorem
from the previous section about general regular inclusions ensures
that the map from T (C ∗r (G )) onto Sinv(C0(G (0))) is in fact a
bijection.

Question

What are necessary and sufficient conditions for τ 7→ µτ to be
injective? What information needs to be added to µτ in order to
describe the trace space bijectively?
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Graph C ∗-algebras

If E = (E 0,E 1, r , s) is a directed graph, then there is a universal
C ∗-algebra C ∗(E ) generated by a family {se , pv}e∈E1,v∈E0 such
that

(1) the pv are mutually orthogonal projections;

(2) the se are partial isometries with mutually orthogonal range
projections;

(3) s∗e se = ps(e) for all e ∈ E 1;

(4) ses∗e ≤ pr(e), and if r−1(v) is finite and non-empty (i.e. v is a
regular vertex), then pv =

∑
r(e)=v ses∗e .

For a directed path α = e1 . . . en, we denote the associated partial
isometry se1 . . . sen by sα.Elements of the form sαs∗β, for α, β ∈ E ∗

(finite path space), span the graph C ∗-algebra.
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The abelian core

Definition

A cycle is a path λ = e1 . . . en in E with r(e1) = s(en).

An entry
to λ is a path f1 . . . fk with r(f1) = r(ek) and f1 6= ek for some k .
The abelian core M(E ) is the C ∗-subalgebra of C ∗(E ) generated
by GM(E ) = {sαs∗α}α ∪ {sαsλs∗α : λ a cycle without entry}.

It is shown in [4] that there is a conditional expectation E from
C ∗(E ) onto M(E ). It is easy to verify that M(E ) ⊂ C ∗(E ) is
regular (all the generators of C ∗(E ) are normalizers of M(E )).
The abelian core is a MASA, in fact M(E ) = D(E )′, where
D(E ) = span{sαs∗α : α ∈ E ∗}.
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by GM(E ) = {sαs∗α}α ∪ {sαsλs∗α : λ a cycle without entry}.

It is shown in [4] that there is a conditional expectation E from
C ∗(E ) onto M(E ). It is easy to verify that M(E ) ⊂ C ∗(E ) is
regular (all the generators of C ∗(E ) are normalizers of M(E )).
The abelian core is a MASA, in fact M(E ) = D(E )′, where
D(E ) = span{sαs∗α : α ∈ E ∗}.
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Tracial states on graph C ∗-algebras

Definition

A graph trace on E is a function g : E 0 → [0,∞) such that

(1) if v is a vertex and {e1, . . . , en} ⊂ r−1(v), then∑n
i=1 g(s(ei )) ≤ g(v), and

(2) if v is a regular vertex, then g(v) =
∑

r(e)=v g(s(e)).

A graph trace is bounded if it is `1 and normalized if ||g ||1 = 1.

Example

If τ is a tracial state on C ∗(E ) then gτ (v) = τ(pv ) defines a
normalized graph trace on E .

Tomforde in [5] showed that the map τ 7→ gτ is surjective onto the
normalized graph traces, using states on K -theory.
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The tracial state space

The map τ → gτ is not always injective.

Example

Let E be the graph with one edge e and one vertex v . Then
C ∗(E ) ∼= C (T), which has infinitely many tracial states. However,
there is only one graph trace, g(v) = 1.

Question

What additional structure needs to be added to parametrize all the
tracial states? When is the map τ 7→ gτ injective?
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The tracial state space, ctd.

Of special interest are tight graphs, which have no entries to
cycles.

We found a natural operation to remove all the entries to
cycles in a graph (corresponds to taking a quotient of C ∗(E )),
which we call tightening E 7→ Etight. Formally, this entails taking
H = {w ∈ E 0 : w is the source of an entry to a cycle}, then
taking the saturation of this hereditary set of vertices, obtaining H.
The theory of graph algebras says that, taking the ideal IH
generated by {pv : v ∈ H}, there is a ∗-isomorphism
C ∗(E )/IH ∼= C ∗(E \ H). The map C ∗(E )→ C ∗(E \ H) induces an
isomorphism on tracial state spaces. The quotient graph E \ H
(formed by removing all the vertices in H and the edges they emit)
is the tightening of E , Etight.
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Cyclically tagged graph traces

Definition

The cyclic support of a graph trace g is the set suppc g of vertices
v with g(v) > 0 that lie on cycles without entry. A cyclically
tagged graph trace is a pair (g , µ), where g is a normalized graph
trace and µ : suppc g → Prob(T). It is consistent if whenever v
and w are on the same cycle, then µ(v) = µ(w). The space of
consistent cyclically tagged graph traces is denoted by T CCT

1 (E ).

Example

If τ is a tracial state on C ∗(E ), we obtain the graph trace gτ as
before, and the cyclic tagging µ = µtau is defined for v ∈ suppc g∫

T
zkdµv =

τ(skλ)

τ(pv )
s(λ) = r(λ) = v |λ| minimal.
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Invariant states and cyclically tagged graph traces

Theorem (C., Nagy)

If (g , µ) ∈ T CCT
1 (E ), there is a state φ(g ,µ) on M(E ) which

satisfies φ(g ,µ)(sαs∗α) = g(s(α)) and

φ(g ,µ)(sαskλs∗α) = g(s(α))
∫
T zkdµs(α) (set right-hand side to 0 if

g(s(α)) = 0).

Furthermore φ(g ,µ) is fully invariant and the
composition φ(g ,µ) ◦ E is a tracial state on C ∗(E ).

Idea of proof

Divide the Gelfand spectrum Ω of M(E ) into two parts, and then
define the state on M(E ) by choosing a measure on Ω that is
suitably invariant. (One part will carry the graph trace and the
other will carry the tagging.)
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Parametrizing T (C ∗(E ))

Theorem (C., Nagy )

(1) for any E , the map

T CCT
1 (Etight) 3 (g , µ) 7→ τ(g ,µ) ◦ ρtight ∈ T (C ∗(E ))

(where τ(g ,µ) ∈ T (C ∗(Etight)) corresponds to (g , µ)) is an
isomorphism.

(2) if E is tight, then τ 7→ (gτ , µτ ) is an isomorphism from
T (C ∗(E )) onto T CCT

1 (E ).
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When is τ 7→ gτ injective

Tomforde noted that if E satisfies condition (K), then the map
τ 7→ gτ is injective. However this is not necessary.

Definition

Two (finite) paths λ and µ are incomparable if neither one
contains the other as initial prefix. A vertex v is essentially left
infinite if there is an infinite set {λk} of finite paths that are
pairwise incomparable and such that s(λk) = v for all k.

Theorem (C., Nagy )

For a directed graph E the following are equivalent:

(i) the map τ 7→ gτ is injective;

(ii) the source of each cycle in E is essentially left infinite.
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When is τ 7→ gτ injective, ctd.

Proof.

(ii) ⇒ (i): If a vertex v is essentially left infinite, then any bounded
graph trace g must vanish on v . Thus if the source of each cycle is
essentially left infinite, there are no measures to consider (after
passing to the tightening) and the map τ 7→ gτ is injective.

(i) ⇒ (ii): If v is the source of a cycle and v is not essentially left
infinite, then we can define a (non-normalized but bounded) graph
trace g on E by g(w) = |{paths v → w}|. Thus there is a
normalized graph trace g on E which does not vanish at v , and if
we take any non-Lebesgue probability measure for µv , the tagging
(g , µv ) is consistent.
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Directions for future work

(1) Results on invariant states seem to generalize readily to
non-abelian context (suggested by R. Exel).

(2) Find necessary and sufficient conditions for the balanced
measures to parametrize all of T (C ∗r (G )) (should have
something to do with non-existence of compact invariant sets
or something related, especially for ample groupoids).
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Thank you!
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