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Abstract. We introduce a new theory of algebraic datatypes where selector sym-
bols can be shared between multiple constructors, thereby reducing the number
of terms considered by current SMT-based solving approaches. We show that
the satisfiability problem for the traditional theory of algebraic datatypes can be
reduced to problems where selectors are mapped to shared symbols based on a
transformation provided in this paper. The use of shared selectors addresses a key
bottleneck for an SMT-based enumerative approach to the Syntax-Guided Syn-
thesis (SyGuS) problem. Our experimental evaluation of an implementation of
the new theory in the SMT solver cvc4 on syntax-guided synthesis and other do-
mains provides evidence that the use of shared selectors improves state-of-the-art
SMT-based approaches for constraints over algebraic datatypes.

1 Introduction

Algebraic datatypes, also known as inductive or recursive datatypes, are composite types
commonly used for expressing finite data structures in computer science applications,
such as lists or trees. Reasoning efficiently about (algebraic) datatypes is thus paramount
in such fields as program analysis and verification, which has led to numerous approaches
for automating solving in this setting. In this paper, we follow the semantic approach
introduced by Barrett et al. [10], which is generally the basis for datatype decision
procedures in satisfiability modulo theories (SMT) solvers [11].

In semantic presentations of the theory of algebraic datatypes [10, 20], a datatype
is an absolutely free algebra over a signature of function symbols called constructors;
the immediate subterms of a datatype value are accessed with function symbols called
selectors, or projections, which are specific for each constructor and its arguments.
Datatypes also have discriminators, or testers, associatedwith each constructor. They are
predicates indicatingwhether a given datatype valuewas built with a specific constructor.

The satisfiability of quantifier-free formulas in the theory of algebraic datatypes is
decidable. A basic decision procedure for this problem [10, 20] used by a number of
SMT solvers operates by progressively unrolling datatypes: it tries to satisfy constraints
by guessing top-level constructors in order to build values for the constraint variables
incrementally. Concretely, if x is a datatype variable and c is an n-ary constructor for
the datatype, the procedure may guess the equality constraint x ≈ c(x1, . . . , xn) where
x1, . . . , xn are fresh variables. If such a choice leads to an inconsistency, the procedure
backtracks and tries different constructors until it determines that the constraints are
satisfiable or no more choices are possible. During this process, lemmas in the form of



quantifier-free clauses may be learned by the procedure that prevent the procedure from
making guesses already shown to be infeasible. However, these lemmas may include
selectors, and because each selector is associated with only a single constructor, the
generality and hence the usefulness of such lemmas is limited.

To address this limitationwe introduce a new (formulation of the) theory of datatypes
that allows certain selectors to be shared by multiple constructors. This way, information
previously acquired when reasoning with a constructor, i.e., the learned lemmas on the
applications of its selectors, can be reused when an argument of the same type is con-
sidered in another constructor. We illustrate this point with the following examplewhich
will be used as a running example throughout the paper.

Example 1. Consider a binary tree whose internal nodes store either one or two integer
values, and whose leaves store both a Boolean and an integer value. A datatype Tree
modeling this data structure has three constructors: one (N1) taking an integer and two
Tree elements as arguments, another (N2) taking two integers and two Tree elements as
arguments, and a third (L) taking as arguments a Boolean and an integer element. We
write this datatype in the following BNF-style notation:

Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

We assume each constructor has selectors associated with them. The subfields (i.e.,
the immediate subterms) of terms constructed by N1 are accessed, respectively, by the
selectors SN1,1, SN1,2, and SN1,3 of type Tree → Int, Tree → Tree and Tree → Tree.
The selectors for the other constructors are similar. The subfields of terms constructed
by N2 are accessed by the selectors SN2,1, SN2,2, SN2,3, and SN2,4; the subfields of L by
SL,1 and SL,2. We also assume each constructor is associated with a tester predicate,
i.e. isN1, isN2, and isL, each of which takes a Tree as an argument. Given term t of type
Tree, consider the following set of clauses:

{ ¬isN1(t) ∨ SN1,1(t) ≥ 0, ¬isL(t) ∨ SL,2(t) ≥ 0 } (1)

The first clause states that when t has top symbol N1, its first subfield (which is of type
Int) is non-negative. Similarly, the second says that when t has top symbol L, its second
subfield is non-negative.

Consider now a different kind of selector symbol SInt,1 of type Tree → Int which
maps each value of type Tree to the first (i.e., leftmost) subfield of t of type Int, regardless
of the top constructor symbol of t. We will refer to such selectors as shared selectors.
While nine selectors in the standard sense are necessary for Tree, five shared selectors
suffice to access all possible subfields of a value of type Tree: two to access the Tree
subfields, two to access the Int subfields, and one to access the Bool subfield of L. In
particular, clause set (1) can be rewritten as follows using only one shared selector:

{ ¬isN1(t) ∨ SInt,1(t) ≥ 0, ¬isL(t) ∨ SInt,1(t) ≥ 0 } (2)

stating that when t has top symbol N1 or L, its first integer child is non-negative. •

In Example 1, the second set of clauses has one unique arithmetic constraint whereas
the first set has two. In practice, reducing the number of unique constraints can sub-
stantially improve the performance of SMT solvers. Our experiments show that shared
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selectors lead to a significant reduction in the number of unique constraints for several
classes of benchmarks from real applications, with resulting SMT solver performance
improvements that are proportional to the magnitude of this reduction.

ContributionsWe introduce a conservative extension of the (generic) theory of algebraic
datatypes that features shared selectors. We show how using shared selectors instead
of standard (unshared) selectors can improve the performance of current satisfiability
procedures for the theory and also, as a result, the performance of procedures for syntax-
guided synthesis. Specifically:

1. We formalize the new theory and show that constraints in the original signature can
be reduced to equisatisfiable constraints whose selectors are all shared selectors.
We present a decision procedure for the satisfiability of quantifier-free formulas in
this theory as a natural modification of an earlier procedure for datatypes [20].

2. We provide details on an SMT-based approach for syntax-guided synthesis [22],
and demonstrate how it can significantly benefit from native support in the SMT
solver for a theory of datatypes with shared selectors.

3. We present an extensive experimental evaluation of our implementation in the SMT
solver cvc4 [7] on benchmarks from SMT-LIB [8] and from the most recent edition
of SyGuS-COMP [3], the syntax-guided synthesis competition. This evaluation
shows that shared selectors can reduce the number of terms introduced during
solving, thus leading to more solved problems with respect to the state of the art.

Outline After preliminaries in Section 2, we formalize the new theory of datatypes in
Section 3. In Section 3.2, we define a satisfiability-preserving transformation between
(datatype) constraints containing only standard selectors and constraints containing only
shared selectors. In Section 4, we present a decision procedure for satisfiability in the
theory based on a preliminary elimination of standard selectors. Section 5 introduces
syntax-guided synthesis and explains how this application benefits from datatypes with
shared selectors. Section 6 presents our experimental evaluation. We cover related work
in Section 7 and offer concluding remarks in Section 8.

2 Preliminaries

Our setting is a many-sorted classical first-order logic similar in essence to the one
adopted by the SMT-LIB standard [9]. A signature Σ = (Y, F ) consists of a set Y of
first-order types, or sorts, and a set F of first-order function symbols over these types.
Each symbol f ∈ F is associated with a list τ1, . . . , τn of argument types and a return
type τ, written f : τ1 × · · · × τn → τ or just f : τ if n = 0. The function arity(f) returns n.
We assume that any signature contains a Bool type and constants true, false : Bool; a
family (≈ : τ×τ → Bool)τ∈Y of equality symbols; a family (ite : Bool×τ×τ → τ)τ∈Y
of if-then-else symbols; and the Boolean connectives ¬, ∧, ∨ with their expected types.
Function symbols of Bool return type play the role of predicate symbols.

Typed terms are built as usual over function symbols from F and typed variables
from a fixed family (Vτ)τ∈Y of pairwise-disjoint infinite sets. Formulas are terms of
type Bool. Equivalence is equality (≈) on Bool. The syntax t 0 u is short for ¬(t ≈ u).
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We reserve the names a, c, f, g, p, q for function symbols; x, y, z for variables; r, s, t, u for
terms (which may be formulas); and ϕ, ψ for formulas. We use the symbol = for equality
at the meta-level. We write tτ to indicate that t is a term of type τ. The set of all terms
occurring in a term t is denoted by T(t). When convenient, we write an enumeration
of (meta)symbols a1, . . . , an as ā. If b1, . . . , bk is another enumeration, āb̄ denotes the
enumeration a1, . . . , an, b1, . . . , bk .

Given a signature Σ = (Y, F ), a Σ-interpretation I maps: each τ ∈ Y to a non-
empty set τI , the domain of τ in I, with BoolI = {>,⊥}; each x ∈ Vτ to an element
of τI ; each f ∈ F s.t. f : τ1 × · · · × τn → τ to a total function uI : τI1 × · · · × τ

I
n → τI

when n > 0 and to an element of τI when n = 0 , with trueI = > and falseI = ⊥.
The interpretation I induces as usual a mapping from terms t of type τ to elements
tI of τI . If x1, . . . , xn are variables and v1, . . . , vn are well-typed values for them,
we denote by I[x1 7→ v1, . . . , xn 7→ vn] the Σ-interpretation that maps each xi to vi ,
and is otherwise identical to I. A satisfiability relation between Σ-interpretations and
Σ-formulas is defined inductively as usual.

A theory is a pair T = (Σ, I) where Σ is a signature and I is a non-empty class of
Σ-interpretations, themodels of T , that is closed under variable reassignment (i.e., every
Σ-interpretation that differs from one in I only in how it interprets the variables is also
in I) and isomorphism. A Σ-formula ϕ is T -satisfiable (respectively T -unsatisfiable) if
it is satisfied by some (resp., no) interpretation in I. A satisfying interpretation for ϕ
models (or is a model of) ϕ. A formula ϕ is valid in T (or T -valid), written |=T ϕ, if
every model of T is a model of ϕ.

3 Theory of Datatypes With Shared Selectors

In this section, we consider a theory D of algebraic datatypes over some signature
Σ = (Y, F ) and then extend it conservatively to an expanded signature with shared
selectors. The terms of D are quantifier-free. As a technical convenience, we treat free
variables as constants in a suitable expansion of Σ. The types ofD are partitioned into a
set of datatypesYdt, and a set of other typesYord. We use the metavariables δ, ε to refer to
datatypes and τ, υ for arbitrary first-order types. Each datatype δ is equipped with one or
more constructors, distinguished function symbols from F with return type δ. For every
argument k of a constructor C : τ1 . . . , τn → δ for δ, we assume F contains a (standard)
selector SC,k

δ : δ → τk . We omit δ from the selector name when it is understood or not
important. We refer the reader to the SMT-LIB 2 reference document [9] or Barrett et
al. [10] for a formal definition of this theory.1 We recall salient properties of its symbols
as needed.

To start, each model of the theory, when reduced to the constructors of a datatype in
the theory, is isomorphic to a term (or Herbrand) algebra. Concretely, this means that if
δ ∈ Ydt is a datatype whose constructors are {C1, . . . ,Cm}, then the following formulas

1 The two references differ on how they make selectors (which are naturally partial functions)
total. We follow the SMT-LIB 2 standard here.
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are all D-valid for all distinct i, j ∈ {1, . . . ,m}

∀x1, . . . , xpi , z1, . . . , zqi . Ci(x1, . . . , xpi ) 0 Cj(z1, . . . , zqi ) (Distinctness)
∀x1, . . . , xpi , z1, . . . , zpi .

Ci(x1, . . . , xpi ) ≈ Ci(z1, . . . , zpi ) → x1 ≈ z1 ∧ . . . ∧ xpi ≈ zpi
(Injectivity)

∀x. isC1(x) ∨ · · · ∨ isCm(x) (Exhaustiveness)

Above, we write isCi(t) to denote the predicate that holds if and only if the top symbol of
t is Ci. Strictly speaking, we do not need to extend our signature with the tester symbols
isC since a term of the form isC(t) can be considered an abbreviation for the equality
t ≈ C(SC,1(t), . . . ,SC,n(t)) where n = arity(C).

Interpretations must also respect acyclicity, which states that constructor terms
cannot be equal to any of their proper subterms.

Since all models of D interpret a datatype δ in the same way modulo isomorphism,
we will say that δ is finite if its interpretation is a finite set. For simplicity, we will
assume that every type τ in D that is not a datatype is interpreted as an infinite set in
every model of D. This is not a strong restriction in practice, since types with some
fixed, finite cardinality k can be treated as datatypes with k nullary constructors.

The relationship between an n-ary constructor C and each of its selectors SC,k with
k = 1, . . . , n is captured by the following D-valid formula:

∀x1, . . . , xni . SC,k
δ (C(x1, . . . , xni )) ≈ xk (Standard selection)

3.1 Shared Selectors

We extend the signature of D with additional selectors which we call shared selectors
and denote as Sτ,k

δ , for each datatype δ and type τ in D and each natural number k.
Intuitively, a shared selector Sτ,k

δ for δ, when applied to a δ-term C(t1, . . . , tn) returns
the k-th argument of C that has type τ, if one exists.

Example 2. Consider again the Tree datatype introduced in Example 1:

Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

For term
t = N1(1, N2(2, 3, L(true, 4), L(false, 5)), L(true, 6))

the equalities SInt,1(t) ≈ 1, SInt,2(STree,1(t)) ≈ 3, and SInt,1(STree,2(STree,1(t))) ≈ 6 are
all valid in our extension of D to shared selectors. •

To define shared selectors formally, let us first define a partial function stoa (for
selector to argument) that takes as input a natural number k, a type τ, and a constructor
C, and returns the index of the k-th argument of C of type τ . We leave stoa undefined
if C has fewer than k arguments of type τ.

Example 3. For the Tree datatype, stoa(1, Int, N1) = 1, stoa(2, Tree, N1) = 3 and
stoa(1, Int, L) = 2, whereas stoa(2, Int, N1), stoa(1, Bool, N2), and stoa(1, Tree, L) are
undefined. •
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H(t, M) = match t with
x → x

C(t1, . . . , tn) → C(H(t1, M), . . . , H(tn, M))

Sτ,k
δ
(t1) → Sτ,k

δ
(H(t1, M))

SC,k
δ
(t1) →

{
Sτ,atos(τ, C, k)
δ

(H(t1, M)) if M(t1) = C
Sτ,err(C, k)
δ

(H(t1, M)) otherwise
where SC,k

δ
: δ→ τ

Fig. 1: Definition ofH(t, M)

More formally, in our extension of theory D with shared selectors, which we also refer
to asD for convenience, the following holds for all datatypes δ, constructors C of δ, and
shared selectors Sτ,k , whenever stoa(k, τ, C) is defined:

∀x1, . . . , xn. Sτ,k
δ (C(x1, . . . , xn)) ≈ xi, where i = stoa(k, τ, C) (Shared selection)

It is not difficult to argue that every Σ-formula ϕ without shared selectors is valid in
the extended theory if and only if it is valid in the original theory.

3.2 From Standard Selectors to Shared Selectors

The satisfiability problem for constraints, i.e., finite sets of literals, over the original
theory of datatypes (without shared selectors) is decidable [10]. In this section, we
introduce a transformation H that reduces arbitrary constraints in our extended theory
D, which may have both standard and shared selectors, to constraints with no standard
selectors. Applying this transformation as an initial step allows us to determine the
satisfiability of arbitraryΣ-constraints bymeans of a decision procedure forΣ-constraints
without standard selectors.

To define this transformation, let maxΣ denote some natural number that is greater
than the arity of all constructors in Σ. We define the dual of the stoa function from
Subsection 3.1 as the partial function atos (for argument to selector) that takes as input
a type τ, a constructor C : τ1 × · · · × τn → δ, and a natural number k ≤ n, and returns
the number of times τ occurs in τ1, . . . , τk .

Figure 1 defines the transformation H , which takes as arguments a Σ-term t and a
mapping M . The latter consists of one entry of the form s 7→ C for each datatype term
s in T(t) where C is one of the constructors for the type of s. Without loss of generality,
we assume that all applications of shared selectors Sτ,kδ occurring in t are such that
k < maxΣ. The transformation H leaves variables unchanged; for terms whose top
symbol is a constructor or a shared selector,H behaves homorphically. For terms t with
a standard selector SC,k

δ : δ → τ as top symbol, we distinguish whether the argument
t1 is mapped to C by M or not. In the first case, we replace SC,k

δ by the shared selector
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Sτ,atos(τ, C, k)
δ . In the second case, we replace SC,k

δ by the shared selector Sτ,err(C, k)
δ , where

err is a function that takes as arguments a constructor and a k such that 1 ≤ k ≤ arity(C),
and returns a natural number. Additionally, err has the following properties:
1. If C1 , C2 or k1 , k2, then err(C1, k1) , err(C2, k2), and
2. err(C1, k) ≥ maxΣ.

We use the function err in this transformation to introduce shared selectors that are
unique to the pair (C, k), as guaranteed by Property 1 above, and whose return value is
undefined, as guaranteed by Property 2. In either case,H is applied recursively to t1.

We extendH to sets of equalities and disequalities E as follows:

H(E, M) = {H(t1, M) ≈ H(t2, M) | t1 ≈ t2 ∈ E } ∪
{H(t1, M) 0 H(t2, M) | t1 0 t2 ∈ E } ∪ { isC(t) | t 7→ C ∈ M }

In other words, for each (dis)equality, we include the corresponding constraint where
the transformation is applied to both its terms. We add to this set an application of the
discriminator for C to t for each t 7→ C in the mapping M .

Example 4. Consider again the Tree datatype from Example 1. Let:

E = {x ≈ N1(2, y, SN1,2(x)), SN1,1(x) ≈ 2, SL,2(x) 0 0} and M = {x 7→ N1, y 7→ L}

Then,H(E, M) is the set:

{x ≈ N1(2, y, STree,1(x)), SInt,1(x) ≈ 2} ∪ {SInt,err(L, 2)(x) 0 0} ∪ {isN1(x), isL(y)}

Since M maps x to N1, the standard selector application SN1,2(x) is converted to the
shared selector application STree,1(x), whereas SL,2(x) is converted to SInt,err(L, 2)(x). •

The following theorem states the key property of the transformationH , namely that
a set of arbitrary Σ-constraints E is satisfiable if and only if there exists some mapping
M for which H(E, M) is satisfiable. The full proof of this statement is available in an
extended version of this paper [24].

Theorem 1. E is D-satisfiable iffH(E, M) is D-satisfiable for some M .

Proof. We split the statement into its two implications. The proof relies on the construc-
tion of a mapping M from a model of E .
“⇒”: If E is satisfied by some Σ-model I ofD, there exists a mapping MI and Σ-model
J ofD such thatH(E, MI) is satisfied by J . We show this by a particular construction
for MI and J . Let the mapping MI be {t 7→ C | I |= isC(t), t ∈ T(E)}. Construct
J as follows. First, all types τ and constructors are interpreted by J the same way
as in I. Furthermore, we interpret all variables and standard selectors in J the same
as in I. It remains to state how shared selectors are interpreted in J . Notice that our
transformation generates shared selectors of the form Sτ,err(C, k)

δ . We distinguish these in
the following construction.

Sτ,err(C, k)
δ

J
= SC,k

δ

I
, and Sτ,k

δ

J
= Sτ,k

δ

I
for all other shared selectors.

The above construction is well-defined due to our definition of err. In particular, err(C, k)
is defined uniquely for each (constructor, natural number) pair. We showH(t, MI)J =
tI for all terms t ∈ T(E) by structural induction on t.
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– Case t = x, for some variable x: By the definition ofH and the construction of J ,
we have thatH(x, MI)J = xJ = xI . ut

– Case t = C(t1, ..., tn): We have that

H(C(t1, ..., tn), MI)J

= CJ(H(t1, MI)J, ...,H(tn, MI)J) by the definition ofH

= CJ(tI1 , ..., t
I
n ) by the induction hypothesis

= CI(tI1 , ..., t
I
n ), by the construction of J

= C(t1, ..., tn)I .

– Case t = Sτ,k
δ (t1): Firstly,

H(Sτ,k
δ (t1), MI)J

= (Sτ,k
δ )

J(H(t1, MI)J) by the definition ofH

= (Sτ,k
δ )

J(tI1 ) by the induction hypothesis

By assumption,we have that k < maxΣ. Hence, by the construction ofJ , (Sτ,k
δ )

J(tI1 ) =
(Sτ,k

δ )
I(tI1 ), which is Sτ,k

δ (t1)
I .

– Case t = SC,k
δ (t1) where SC,k

δ : δ→ τ:
• If MI(t1) = C, then

H(SC,k
δ (t1), MI)J

= (Sτ,atos(τ, C, k)
δ )J(H(t1, MI))J by the definition ofH

= (Sτ,atos(τ, C, k)
δ )J(tI1 ), by the induction hypothesis

By definition of atos and since k is a valid argument position of C, we have
that atos(τ, C, k) ≤ arity(C) < maxΣ. Hence, by the construction of J , we
have that (Sτ,atos(τ, C, k)

δ )J(tI1 ) = (S
τ,atos(τ, C, k)
δ )I(tI1 ). Since MI(t1) = C, by

construction of MI , we have that tI1 is a termof the formC(s1, . . . , sn), and hence
(Sτ,atos(τ, C, k)

δ )I(tI1 ) = sstoa(atos(τ, C, k), τ, C) = sk . Furthermore, sk = SC,k
δ (t1)

I .
• If MI(t1) , C, then

H(SC,k
δ (t1), MI)J

= (Sτ,err(C, k)
δ )J(H(t1, MI)J) by the definition ofH,

= (Sτ,err(C, k)
δ )J(tI1 ), by the induction hypothesis,

= (SC,k
δ )

I(tI1 ), by the construction of J,

= SC,k
δ (t1)

I .
ut

Since I satisfies E and sinceH(t, MI)J = tI for all terms t ∈ T(E), we have that
J satisfies the equalities and disequalities in H(E, MI) of the form (¬)H(t1, MI) ≈
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H(t2, MI). By construction of MI , we have thatJ satisfies the constraints inH(E, MI)
of the form isC(t) where t 7→ C ∈ MI . Hence, J satisfiesH(E, MI).

“⇐”: If H(E, M) is satisfied by some Σ-model J of D for some mapping M , then
E is satisfied by some Σ-model I of D. We show this by constructing I as follows.
First, all types, constructors, variables and have the same interpretation in I as in J .
Furthermore, all shared selectors have the same interpretation in I as in J . We interpret
standard selectors in I as follows.

SC,k
δ (t)

I =

{
Sτ,atos(τ, C, k)
δ (t)I if M(t) = C

Sτ,err(C, k)
δ (t)I otherwise

We show tI = H(t, M)J for all terms t ∈ T(E) by structural induction on t as
follows.

– Case t = x, for some variable x: By the definition ofH and the construction of J ,
we have thatH(x, M)J = xJ = xI . ut

– Case t = C(t1, ..., tn): We have that

H(C(t1, ..., tn), MI)J

= CJ(H(t1, M)J, ...,H(tn, M)J) by the definition ofH,

= CJ(tI1 , ..., t
I
n ) by the induction hypothesis,

= CI(tI1 , ..., t
I
n ), by the construction of I

= C(t1, ..., tn)I .

ut

– Case t = Sτ,k
δ (t1):

H(Sτ,k
δ (t1), M)J

= (Sτ,k
δ )

J(H(t1, M)J) by the definition ofH,

= (Sτ,k
δ )

J(tI1 ) by the induction hypothesis,

= (Sτ,k
δ )

I(tI1 ) by the construction of I,

= Sτ,k
δ (t1)

I

ut

– Case t = SC,k
δ (t1) where SC,k

δ : δ→ τ:
• If M(t1) = C, then

H(SC,k
δ (t1), M)J

= (Sτ,atos(τ, C, k)
δ )J(H(t1, MI)J) by the definition ofH,

= (Sτ,atos(τ, C, k)
δ )J(tI1 ), by the induction hypothesis,

= (Sτ,atos(τ, C, k)
δ )I(tI1 ), by the construction of I,

= SC,k
δ (t1)

I, by the construction of I, since M(t1) = C.
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• If M(t1) , C, then

H(SC,k
δ (t1), MI)J

= (Sτ,err(C, k)
δ )J(H(t1, MI)J) by the definition ofH

= (Sτ,err(C, k)
δ )J(tI1 ), by the induction hypothesis,

= (Sτ,err(C, k)
δ )I(tI1 ), by the construction of I,

= SC,k
δ (t1)

I, by the construction of I, since M(t1) , C.

ut

Since J satisfies H(E, M) and tI = H(t, M)J for all t ∈ T(E), we have that
I satisfies the equalities and disequalities in H(E, MI) of the form (¬)H(t1, M) ≈
H(t2, M). Furthermore, since J satisfies the constraints isC(t) for all t 7→ C ∈ M
and since tI = tJ , we have that I satisfies these constraints as well. Thus, I satisfies
H(E, M). ut

Corollary 1. For some index sets I and J, and set E of Σ-literals without standard
selectors, let

E0 = E ∪ { SCji,ki (xi) ≈ yi | i ∈ I, j ∈ J } and
E1 = E ∧ { ite(isCji (xi), Sτ,atos(τ, Cji, ki )(xi), Sτ,err(Cji, ki )(xi)) ≈ yi | i ∈ I, j ∈ J } .

The sets E0 and E1 are equisatisfiable in D.

Proof. For an interpretation I, then let MI be the mapping {t 7→ C | I |= isC(t), t ∈
T(E0 ∪ E1)}. We first show that I satisfiesH(E0, MI) if and only if I satisfies E1.

First, for each (dis)equality (¬)t1 ≈ t2 ∈ E , we have that H(E0, MI) contains
a (dis)equality of the form (¬)H(t1, MI) ≈ H(t2, MI), which by definition of H
is equivalent to (¬)t1 ≈ t2, since E does not contain standard selectors. Second, by
definition of MI , we have that I |= {isC(t) | t 7→ C ∈ MI}. Since H(yi, MI) = yi for
all yi , it suffices to showH(SCji,ki (xi), MI)I is equal to ite(isCji (xi), Sτ,atos(τ, Cji, ki )(xi),
Sτ,err(Cji, ki )(xi))I for all Cji , ki , and xi . By the definition of H and MI , we have that
H(SCji,ki (xi), MI) = Sτ,atos(τ, Ci, ki )(xi) when I |= isCji (t), and Sτ,err(Ci, ki )(xi) when
I 6|= isCji (t). Hence, H(SCji,ki (xi), MI)I is equal to ite(isCji (xi), Sτ,atos(τ, Cji, ki )(xi),
Sτ,err(Cji, ki )(xi))I .

Thus, I satisfies H(E0, MI) if and only if I satisfies E1. Thus, by Theorem 1, we
have that E0 is satisfiable if and only if E1 is satisfiable. ut

Using this corollary, we can reduce (possibly after some literal flattening) the satisfia-
bility of an arbitrary set of Σ-constraints E0 to a set of Σ-constraints E1 not containing
standard selectors. In particular, our implementation in cvc4 replaces each application
of the form SCji,ki (xi) by the term ite(isCji (xi), Sτ,atos(τ, Cji, ki )(xi), Sτ,err(Cji, ki )(xi)) during
a preprocessing pass on the input formula.
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4 Decision Procedure for Datatypes with Shared Selectors

This section describes a tableau-like calculus for deciding constraint satisfiability inD,
with constraint variables interpreted existentially. The calculus is parametrized by the
theory’s signature Σ. By the results of the previous section, we can restrict with no loss
of generality the input language to sets of equalities and disequalities between Σ-terms
with no standard selectors and no discriminators. Since our calculus is based on similar
calculi for datatypes that have been presented in detail in previous work [10, 20], we
focus on our modifications to accommodate shared selectors.

The derivation rules of the calculus operate on a current set E of constraints as
specified in Figure 2. A derivation rule can be applied to E if its premises are met.
Some of those premises check membership in the congruence closure E∗ of E , the
smallest superset of E that is closed under entailment in the theory of equality.2 A rule’s
conclusion either modifies E or replaces it by ⊥ to indicate unsatisfiability. There, the
notation E, t ≈ s abbreviates E ∪ {t ≈ s}; the notation t̄ ≈ ū stands for the set of
equalities between the corresponding elements of t̄ and ū. The Split rule has multiple
alternative conclusions, denoting branching.

A rule application is redundant if (one of) its conclusion(s) leaves E unchanged.
The rules are applied to build a derivation tree, i.e., a tree whose nodes are finite sets
of (dis)equalities, with an initial constraint set E0 as its root and child nodes obtained
by a non-redundant rule application to their parent. We say that E0 has a derivation tree
D if D is a derivation tree with root E0. A node is saturated if it admits only redundant
rule applications. A derivation tree is closed if all of its leaf nodes are ⊥. Intuitively, a
derivation tree is generated progressively from E0 by applying a derivation rule to a leaf
node. The rules are applied until the derivation tree becomes closed (indicating that the
initial set E0 is D-unsat) or contains a saturated leaf node (indicating that E0 is D-sat).

In the calculus, all reasoning based on the general properties of equality is encapsu-
lated in the rule Conflict, which detects that congruent terms are forced to be distinct.
The remaining rules perform datatype reasoning proper, with Decompose computing a
downward equality closure based on the injectivity of constructors and Clash detecting
failures based on their distinctness. The Cycle rule recognizes when a constructor term
must be equivalent to one of its subterms, which is forbidden in all models of the theory.

The calculus also incrementally unrolls terms by branching on different constructors,
with the Split rule performing case distinctions on constructors for various terms
occurring in E . The main modification from the previous calculi for the theory of
datatypes is that this Split rule operates on shared selectors. Its application can be
seen as an on-the-fly transformation from standard to shared selectors as described in
Section 3.2. Indeed, for each constructor Ci in its conclusion, the following holds with
a mapping M such that M(t) = Ci:

Sτ1,atos(τ1, Ci, 1)
δ (t) = H(SCi,1

δ (t), M), . . . , Sτni,atos(τni, Ci, ni )

δ (t) = H(SCi,n
δ (t), M)

Any derivation strategy for the calculus that does not stop until it generates a closed
tree or a saturated node yields a decision procedure for the D-satisfiability of sets of

2 Such tests are effective by well-known results about the theory of equality [6].
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t ≈ u ∈ E∗ t 0 u ∈ E
Conflict

⊥

C1(t̄ ) ≈ C1(ū) ∈ E∗
Decompose

E := E, t̄ ≈ ū

C1(t̄ ) ≈ C2(ū) ∈ E∗ C1 , C2
Clash

⊥

Cn(ūnuv̄n) ≈ un−1, . . . , C2(ū2u2v̄2) ≈ u1, C1(ū1u1v̄1) ≈ u ∈ E∗ n ≥ 1
Cycle

⊥

Sτ,n
δ
(t) ∈ T(E) or δ is finite

Split
E := E, t ≈ C1(S

τ1,1,atos(τ1,1, C1, 1)
δ

(t), . . . , S
τ1,n1,atos(τ1,n1, C1, n1)

δ
(t))

...

E := E, t ≈ Cm(S
τm,11,atos(τm,1, Cm, 1)
δ

(t), . . . , Sτm,nm,atos(τm,nm, Cm, nm)

δ
(t))

where δ has constructors C1, . . . , Cm and Ci : τ1,i × · · · × τi,ni → δ, 1 ≤ i ≤ m

Fig. 2: Derivation rules.

Σ-literals. We prove this similarly to previous work [10, 20], but using shared selectors
and in the simpler setting obtained by assuming the availability of a congruence closure
procedure. The full proofs are available in an extended version of this paper [24].

Proposition 1 (Termination). All derivation trees in the calculus are finite.

Proof. Consider a derivation tree with a root rode E . Let D ⊆ T(E) be the set of terms
whose types are finite datatypes, and let N ⊆ T(E) be the set of terms occurring as
arguments to shared selectors. For each term t ∈ D, let

S0
t = {t} Si+1

t = Si
t ∪ {S

τ,n
δ (u)} | u

δ ∈ Si
t, δ ∈ Ydt, |δ | is finite, Sτ,nδ ∈ Fsel}

and let S∞t be the limit of this sequence. This is a finite set for each t, since all selector
chains applied to t are finite. Let S∞ be the union of all sets S∞t where t ∈ D, and let

T∞(E) = T

(
E ∪

{
Ci(S

τi,atos(τi, Ci, 1)
δ (t), . . . ,Sτni,atos(τni, Ci, ni )

δ (t)) tδ ∈ N ∪ S∞,
Ci ∈ F

δ
ctr

})
In a derivation tree with root node E , it can be shown by induction on the rules of
the calculus that each non-root nor ⊥-node F is such that T(F) ⊆ T∞(E), and hence
contains an equality between two terms from T∞(E) not occurring in its parent node.
Thus, the depth of a branch in a derivation tree with root node E is at most |T∞(E)|2,
which is finite since T∞(E) is finite. ut

Proposition 2 (Refutation Soundness). If a constraint set E0 has a closed derivation
tree, then it is D-unsatisfiable.
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Proof. The proof is by structural induction on the derivation tree with root node E . If the
tree is an application of Conflict, Clash or Cycle, then E is triviallyD-unsatisfiable, due
to equality reasoning and for D not accepting models in which distinctness is violated
or a constructor term has the same value as one of its subterms, respectively. If a child
node of E is a closed derivation tree whose root node E ∪ t ≈ u is obtained by applying
Inject, since C1(t) ≈ Ci(i) ∈ E∗, by injectivity and equality reasoning, E |=D t ≈ u.
Thus, by the induction hypothesis, E ∪ t ≈ u is D-unsatisfiable and thus E is D-
unsatisfiable. The remaining case is that child nodes of E are closed derivation trees
whose root nodes are the result of applying Split on a term tδ . By the induction hypothesis
E ∪ t ≈ Ci(S

τi,atos(τi, Ci, 1)
δ (t), . . . , Sτni,atos(τni, Ci, ni )

δ (t)) is D-unsatisfiable for each Ci ∈

F δctr. By exhaustiveness all models ofD entail exactly one t ≈ Ci(SCi,1
δ (t), . . . , SCi,n

δ (t)).
Since Theorem 1 guarantees that in a model I of D in which t is interpreted as a term
constructed with Ci it holds that SCi, j

δ (t)
I = Sτi,atos(τi, Ci, j)

δ (t)I , for 1 ≤ j ≤ n, then we
can conclude that E is D-unsatisfiable. ut

Proposition 3 (Solution Soundness). If a constraint set E0 has a derivation tree with
a saturated node, then it is D-satisfiable.

Proof. The proof relies on the construction of a specific term-generated interpretation
I from the set of equality literals F in a saturated node of a tree whose root is E . We
will show that by construction I models E .

We build I by assigning to terms as their values constructor terms from their
congruence classes in F∗. Since Inject andClash cannot be applied on F, no congruence
class in F∗ contains more than one constructor term modulo congruence, i.e. no two
terms with different constructors C1(t̄) and C2(ū) and all terms C1(t̄1), . . . ,C1(t̄n) in the
same class are equivalent modulo congruence, since t̄1, . . . , t̄n are also congruent. Since
Cycle cannot be applied on F, each term modulo congruence is also acyclic. Finally,
since Split cannot be applied as well, every term of the form Sτi,n

δ (t) is such that t
contains a constructor term in its congruence class.

To finish building I it remains to specify how it interprets terms t whose congruence
classes do not contain constructor terms. If t is not a selector application, it can be
assigned any distinct value from its respective domain in I according to two conditions:
the value has not been assigned before to a term in a congruence class; and it is distinct
from the resulting values computed, after such an assignment, to previously unassigned
terms. The first condition can always be trivially satisfied since if a term is not congruent
to a constructor term, it must have an infinite type, and therefore there are infinitely many
distinct values to be assigned. To satisfy the second condition it suffices to perform the
assignment by adding an equality to F, derive a saturated node F ′, which is always
different from ⊥, and perform the next assignment with a distinct value according to
constructor terms of F ′ modulo congruence.

In the case that t is a selector application Sτ,kδ (u), we distinguish two cases, de-
pending on the congruence class of u containing a constructor term modulo congruence
C(u1, . . . , un) with stoa(k, τ, C) being defined or not. If it is defined, Sτ,kδ (u)

I =

stoa(k, τ, C)I . Otherwise we apply an analogous process as before of assigning a dis-
tinct value for Sτ,kδ (u).
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It is easy to show that I satisfies distinctness, injectivity, exhaustiveness, shared
selection, and acyclicity by construction. Therefore it satisfies all properties of a D-
model. Finally, we show that I satisfies all equalities and disequalities in F. Since I can
be successfully built from any saturated node by assigning the same value to congruent
terms, it trivially satisfies all equalities in F. Since Conflict cannot be applied, no two
congruent terms occur in a disequality in F. Since each congruence class is assigned a
distinct value by I, it satisfies all disequalities. Therefore I is a model of F, and since
E ⊆ F, I is also a model of E . ut

Theorem 2. Constraint satisfiability in the theory D of datatypes with (standard and)
shared selectors is decidable.

Proof. Completeness, i.e. derivation trees with root E are closed if E isD-unsatisfiable
or have a saturated node if E isD-satisfiable, is a direct consequence of Propositions 1, 2,
and 3. Therefore, since the rules from Figure 2 are sound and complete, the calculus
constitutes a decision procedure for the satisfiability of Σ-constraints. ut

5 Using Shared Selectors for Syntax-Guided Synthesis

In this section, we show how the theory of datatypes with shared selectors can substan-
tially improve the performance of an approach by Reynolds et al. [22] for performing
syntax-guided synthesis (SyGuS) [1] directly within an SMT solver.

Syntax-guided synthesis is the problem of automatically synthesizing a function that
satisfies a given specification, but with the addition of explicit syntactic restrictions on
the solution space. These restrictions specify that the functionmust be built with selected
operators over basic types (such as arithmetic and Boolean operators) and belong to the
language generated by a given grammar. Grammars allow users to specify formally a set
of candidates for the desired function, thus reducing the search effort of a SyGuS solver.

More technically, a syntax-guided synthesis problem for a function f in a background
theory T of the basic types consists of:

1. a set of semantic restrictions, or specification, given by a (second-order) T-formula
of the form ∃ f . ∀x̄. ϕ[ f , x̄], and

2. a set of syntactic restrictions on the solutions for f , given by a grammar R.

A solution for f is a lambda term λ ȳ. e of the same type as f , such that (i) ∀x̄. ϕ[λ ȳ. e, x̄]
is valid in T (modulo beta-reductions) and (ii) e is in the language generated by R.

cvc4 incorporates a SyGuS solver that automatically encodes the solution space
of a SyGuS problem as a set of algebraic datatypes mirroring the problem’s syntactic
restrictions [22]. A deep embedding of the datatypes in the problem’s background theory
T , realized as a set of automatically generated axioms, provides a semantics for datatype
values in terms of the semantic values in T .

Example 5. Consider the problem of synthesizing a binary function f over the integers
such that f is commutative (i.e., ∃ f ∀xy. f (x, y) ≈ f (y, x)), and with the solution space
for f defined by a context-free grammar R with start symbol A and production rules:

A→ x | y | 0 | 1 | A + A | A − A | ite(B, A, A) B→ A ≥ A | A ≈ A | ¬B
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The following mutually recursive datatypes capture the grammar R. The datatypes
themselves correspond to R’s non-terminals (e.g., a corresponds to A), their constructors
correspond to production rules (e.g., X corresponds to A→ x):

a = X | Y | Zero | One | Plus(a, a) | Minus(a, a) | Ite(b, a, a)
b = Geq(a, a) | Eq(a, a) | Neg(b)

Datatypes like the ones above are associated with the programs they represent through
evaluation functions that map datatype values, expressed as variable-free constructor
terms, to expressions over the basic types. For example, the evaluation function for a
is denoted by a function symbol evala : a × Int × Int → Int, and the specific term
evala(Plus(X,X), 2, 3) is interpreted as (x + x){x 7→ 2, y 7→ 3} = 2 + 2 = 4. The
evaluation functions are defined axiomatically by a set of quantified formulas that, in
this case, can be handled by any SMT solver that, like cvc4, supports the combined
theory of datatypes, linear arithmetic, and uninterpreted functions. The SyGuS problem
for f in this example can then be stated as the first-order formula:

∀xy. evala(d, x, y) ≈ evala(d, y, x) (3)

where d is a fresh constant of type a. This formula has models in which d is interpreted
as Zero or Plus(X,Y), which correspond to solutions f = λxy. 0 and f = λxy. x + y for
the original problem, respectively.3 •

Since cvc4 is a DPLL(T)-based solver [11], for a problem like the one in the example
above, it will find a possible solution for d by first guessing its top constructor symbol
with an application of the Split rule from Figure 2. The effect of the rule is achieved in
practice with the generation of splitting lemmas such as the following, which we write
here with discriminators and standard selectors for simplicity:

isX(d) ∨ isY(d) ∨ · · · ∨ isIte(d) (4)

isX(SPlus,1(d)) ∨ isY(SPlus,1(d)) ∨ · · · ∨ isIte(SPlus,1(d)) (5)

isGeq(SIte,1(d)) ∨ isEq(SIte,1(d)) ∨ isNeg(SIte,1(d)) (6)

isX(SIte,2(d)) ∨ isY(SIte,2(d)) ∨ · · · ∨ isIte(SIte,2(d)) (7)

The solver will subsequently guess the top constructor for other subterms of d’s value.
These guesses are represented symbolically by selector chains, i.e. zero or more appli-
cations of selectors to d; for example, SPlus,1(d) is a selector chain that corresponds to
the first child of d (if we think of the value of d as a tree) when d is an application of
Plus; SPlus,1(SPlus,1(d)) is a selector chain that corresponds to the first child of the first
child of d when d and its first child are both applications of Plus; and so on.

The bottleneck in solving (3) is the large number of splitting lemmas for selector
chains introduced during search which, depending on the datatypes involved, is often
highly exponential. Our key observation is that datatypes generated by the SyGuS
approach sketched above very often include constructors with arguments of the same

3 For a thorough description of this approach, see [22].
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type. In Example 5, both a and b have multiple constructors with arguments of type a.
Using shared selectors, we can reduce the number of selectors in the example from 7
to 3 for a and from 5 to 3 for b. Moreover, using shared selectors in selector chains
makes splitting lemmas relevant in multiple contexts. For example, a splitting lemma
for a selector chain Sa,1(d) is relevant when d is either Plus, Minus or Ite; likewise
Sa,1(Sa,1(d)) is relevant when d and its first child of type a are applications of either
Plus, Minus or Ite. Notice that by using the decision procedure for shared selectors from
Section 4, lemmas (5) and (7) would be instead both provided to the SAT engine as:

isX(SInt,1(d)) ∨ isY(SInt,1(d)) ∨ · · · ∨ isIte(SInt,1(d))

Using shared selectors can lead to a reduction in the number of other kinds of lemmas
as well. For instance, during synthesis cvc4 implements symmetry breaking techniques
to avoid spending time on multiple candidates that are all equivalent in T [22, 23].
Redundant candidates are avoided by adding blocking clauses to the SAT engine that
are also expressed in terms of discriminators applied to selector chains.

Example 6. Consider again the function f , grammar R, and datatypes a and b from
Example 5. Assume that the solver considers X as a candidate solution for d, and later
considers another candidate solution, Plus(X, Zero). Since the corresponding arithmetic
terms x and x+0 are equivalent in integer arithmetic, the solver infers a lemma template
of the form:

¬isPlus(z) ∨ ¬isX(SInt,1(z)) ∨ ¬isZero(SInt,2(z))

to block a redundant candidate solution like (the one corresponding to) x + 0. This is
achieved by instantiating the template with the substitution {z 7→ d} for variable z. More
interestingly, z can be instantiated with other selector chains to rule out entire families of
redundant candidate solutions. For instance, the lemma obtained with {z 7→ SInt,1(d)}
rules out all terms that have x + 0 as their first child of type a, such as the terms
(x + 0) + y, ite(x ≥ y, x + 0, y) and (x + 0) − 1, which are equivalent to the smaller
expressions x + y, ite(x ≥ y, x, y) and x − 1, respectively, and hence redundant as
candidate solutions. Sharing selectors allows the same blocking clause to be reused
for the different constructors, whereas standard selectors would require three different
clauses in this case,with z 7→ SPlus,1(d), z 7→ SIte,2(d), and z 7→ SMinus,1(d), respectively.
•

A majority of SyGuS problems can be encoded as datatypes that have significant shar-
ing of selectors across multiple constructors, thus making the use of shared selectors
particularly effective in this domain. The next section measures the impact of shared
selections when solving SyGuS problems in cvc4.

6 Experiments

We implemented our calculus for the theory of datatypes with shared selectors in cvc4
Version 1.5, together with a preprocessing pass to convert standard selectors in input
formulas to shared ones and other modifications to the existing decision procedure for
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Family # Solved: sh / std Time SAT Decs Terms Sels

General 535 319 / 235 (232) 15.4 / 144.9 67k / 151k 189k / 284k 5.8 / 16.8
CLIA 73 18 / 17 (17) 25.1 / 142.4 158k / 405k 25k / 60k 9.6 / 22.2
Invariant 67 46 / 46 (46) 49.1 / 114.6 374k / 896k 37k / 61k 5.7 / 13.1
PBE_BV 750 665 / 253 (253) 27.4 / 211.9 54k / 3873k 14k / 202k 3.0 / 16.0
PBE_Strings 108 93 / 64 (64) 13.3 / 39.9 90k / 334k 14k / 41k 8.6 / 18.7

Fig. 3: Performance of cvc4 on benchmarks from five families of SyGuS Comp 2017.

datatypes, as described in Sections 3.2 and 4. We discuss here our evaluation of two
configurations of cvc4, one with and one without support for shared selectors, on two
different sets of benchmarks: the SyGuS benchmark suite from the 2017 SyGuS competi-
tion [4]; and a subset of the SMT-LIB [8] benchmarks containing datatype computations
. Our experiments4 were performed on the StarExec logic solving service [26].

6.1 Syntax-guided Synthesis Benchmarks

The benchmarks from the 2017 SyGuS competition are divided into five families across
four tracks:

– The “General” track - problems over the theories of linear integer arithmetic (LIA)
or bit-vectors.

– The conditional linear integer arithmetic track (CLIA) - problems over the theory
of LIA.

– The “Invariant” synthesis track - invariant synthesis benchmarks specifying the
problem with pre- and post- conditions, and a transition relation, over LIA.

– Programming by example track - consists of the bit-vector and strings subtracks,
where problems are semantically constrained by examples.

We measured the impact of shared selectors by comparing for the two configurations
of cvc4 the total number of solved problems and the average solving time, number of
decisions performed by the SAT engine, quantifier-free terms generated, and number of
selectors in the signature. Averages were computed over the set of problems solved by
both configurations. We used a timeout of 30 minutes per benchmark.

A summary of the results is given in Figure 5. The first two columns show the
evaluated family and the number of benchmarks in it, while the other columns present
the statistics listed above, with average times expressed in seconds. The number of
problems solved by both configurations is given in parentheses in the third column.
The results clearly show that sharing selectors reduces the number of selectors in the
signature, which generally leads to fewer terms and SATdecisions, with a positive impact
on solving speed and number of problems solved. Except for the invariant family, the
cvc4 configuration with shared selectors solves more problems than the one without.
The impact of shared selectors is particularly significant for the bit-vector benchmark

4 The data and details on how to reproduce our results are available at https://cvc4.cs.
stanford.edu/papers/IJCAR2018-shsel/.

17

https://cvc4.cs.stanford.edu/papers/IJCAR2018-shsel/
https://cvc4.cs.stanford.edu/papers/IJCAR2018-shsel/


10−2 10−1 100 101 102 103 104

cvc4-shared

10−2

10−1

100

101

102

103

104

cv
c4

-s
ta

nd
ar

d

Time

100 101 102 103 104 105 106 107 108

cvc4-shared

100

101

102

103

104

105

106

107

108

cv
c4

-s
ta

nd
ar

d

SAT Decisions

Fig. 4: Impact of shared selectors on solving time and number of SAT decisions.

Family # eus cvc4-si-sh cvc4-si-std

General 535 404 391 334
CLIA 73 71 73 73
Invariant 67 42 46 46
PBE_BV 750 739 665 253
PBE_Strings 108 68 93 64

Fig. 5: Performance of cvc4 and EUSolver on benchmarks from five families of SyGuS
Comp 2017.

suite (PBE_BV), with a reduction of over 80% in the average number of selectors. In
that case, cvc4 is over eight times faster with shared selectors than without, solving
412 more problems, thus reducing the percentage of unsolved problems in this category
from over 65% to less than 12%. Significant improvements can also be observed in the
PBE_Strings and General families, with the percentages of unsolved problems being
reduced from over 40% to almost 13% and from over 55% to almost 40%, respectively.

We present a per-problem comparison in the scatter plots of Figure 4, which clearly
shows that for the vast majority of the benchmarks, sharing selectors reduces the number
of SAT decisions and improves the solving time, often by orders of magnitude.

Comparison against other SyGuS solvers We also compared cvc4’s performance with
the state-of-the-art SyGuS solver EUSolver [2, 5]. For fairness, in this comparison
we combine the results of the above configurations of cvc4 with its other approach for
solving single-invocation synthesis problems (see [22] for details), which impacts the
CLIA and General families of benchmarks. The results are summarized in Figure 5.
We obtained the following results for the problems solved by EUSolver and cvc4 with
and without shared selectors: 71/73/73 for CLIA, 404/391/334 for General, 42/46/46
for Invariant, 739/665/253 for PBE_BV, and 68/93/64 for PBE_Strings. These numbers
show that overall cvc4 is significantly more competitive with shared selectors than
without, surpassing EUSolver’s performance in three of the five families.
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Family # Solved: sh / std Time Decs Terms Sels

Leon 410 179 / 175 (175) 0.96 / 0.75 9920 / 9925 718 / 929 8.67 / 23.10
Sledgehammer 321 113 / 112 (112) 0.47 / 0.47 6949 / 6942 185 / 185 10.50 / 12.76
Nunchaku 158 67 / 67 (67) 0.49 / 0.44 7149 / 6653 1373 / 1297 6.22 / 7.22

Fig. 6: Performance of cvc4 on benchmarks from three families of SMT LIB.

6.2 Datatype benchmarks from SMT LIB

We also considered all SMT-LIB benchmarks containing datatypes. Among these, we
excluded from consideration 14, 387 benchmarks that do not have any shareable selec-
tors, as cvc4 with and without shared selectors perform the same on these benchmarks.
The remaining 889 benchmarks are divided into three families:

– A set of benchmarks generated by Leon [12] (and Nunchaku and cvc4) for coun-
terexample generation for higher-order theorem provers (AUFBVDTLIA logic). We
will refer to this set as ‘Leon’.

– Benchmarks generated for verification in Isabelle [19] by the Sledgehammer tool
[14] (UFDT logic). This set will be referred to as ‘Sledgehammer’.

– A benchmark set generated for higher order theorem provers by Nunchaku [21] (and
Leon, and cvc4) (UFDT logic). This is the ‘Nunchaku’ set.

We summarize our results over the two configurations of cvc4, with and without
shared selectors, in Figure 6, following the same schema as in Figure 5. We used a
timeout of 60 seconds, since in this setting we evaluate SMT solvers as backends of
verification and ITP tools, which require fast answers. The configuration with shared
selectors solved at least all the benchmarks as the one without. The Leon benchmark set
shows the most significant impact of sharing selectors, with a reduction of over 60% in
the average number of selectors, and 4 more problems solved. It is important to remark
that cvc4 employs heuristic instantiation techniques for solving these benchmarks, which
can be very sensible for changes in the signature. The relevant number to measure then
is the number of solved benchmarks, which either remains the same or improves with
shared selectors, even if the average solving time is marginally worse.

Comparison against other SMT solvers To put the shared selector version of cvc4 in
context with the state of the art, we also compared it with the only two provers that can
reason about datatypes and support the SMT-LIB format: z3 [16] and Vampire [17].
On the Nunchaku and Sledgehammer benchmarks, the number of problems solved by
cvc4/z3/Vampire is 67/29/30 and 113/119/138, respectively. The comparison on the
Leon set excludes Vampire, since it does not support the theory of bit-vectors; the split
between cvc4 and z3 is 179/173 on that set. The results show that cvc4 compares
favorably with the other tools.

7 Related Work

The motivation of our work is to reduce the number of terms considered by a decision
procedure for the theory of algebraic of datatypes, based on procedures introduced in
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previous work [10, 20]. Thus, our contributions apply to other systems that handle
datatypes semantically, such as smbc [15] and the SMT solver z3 [16]. On systems
that reason about datatypes axiomatically, such as the first-order theorem prover and
SMT solver Vampire [17], and the higher-order systems Isabelle [19] and Dafny [18],
whether to share selectors and how to handle them is simply a matter of axiomatizing
the datatypes theory accordingly. For example, the axiomatization in Vampire avoids
selectors altogether [17, Sect. 4.3], while in Isabelle users are encouraged to write
specifications directly with shared selectors [13, Sec. 3].

Most SyGuS solvers employ a variation of counter-example guided inductive syn-
thesis (CEGIS), introduced by Solar-Lezama [25]. While cvc4 benefits from sharing
selectors by representing syntax restrictions with datatypes, other systems use an outer
layer with an underlying reasoning engine, for instance using an SMT solver to verify the
correctness of candidate solutions, but not for performing the enumerative search [5].

8 Conclusion

We have presented an extension of the theory of algebraic datatypes that adds shared
selectors. We have discussed and proved correct a calculus for deciding the constraint
satisfiability problem in the new theory. Moreover, we have described how algebraic
datatypes can be leveraged in an SMT solver to solve syntax-guided synthesis problems
and explained how the use of shared selectors in this setting can lead to significant
performance gains. Our experiments demonstrate that an implementation of the new
calculus in the cvc4 solver significantly enhances its performance on syntax-guided
synthesis problems and is responsible for making cvc4 the best known solver for certain
classes of problems.

In future work, we plan to generalize our approach so that distinct selector chains can
be compressed to a single application of the same selector symbol. This requires more
sophisticated criteria for recognizing when two selector chains for a datatype cannot
be simultaneously constrained for arbitrary values of that datatype. We believe that this
further extension can be done in a manner similar to the one presented here and expect
that this will lead to further performance improvements.
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