
A 1-bit ALU

operation

Carry in

A

B 00

01 Result

10

Carry out

Understand how this circuit works.

Then look at the diagram of the 32-bit ALU in p.235.

Need to add one more input to the mux to implement slt

Adder

Converting an adder into a subtractor

A - B (here - means arithmetic subtraction)

= A + 2’s complement of B

= A + 1’s complement of B + 1

operation

Carry in

A

B 00

01 Result

0 10

1

11

B invert Carry out

1-bit adder/subtractor

For subtraction, B invert = 1 and Carry in = 1

Adder

1-bit ALU for MIPS

Assume that it has the instructions add, sub, and, or, slt.

operation

Carry in

A

B 00

01 Result

0 10

1

Less 11

B invert Set

 Carry out

Less will be used to detect if the 32-bit number A is less

than the 32-bit number B. See the next page.

If A < B then Set = 1 else Set = 0

add

A 32-bit ALU for MIPS

B invert C in operation

A0

B0

Less

 C in

A1

B1

0

..

..

A31

B31 Result 31

0 Set overflow

ALU

Cout

ALU

Cout

ALU

Cout

Fast Carry Propagation

During addition, the carry can trigger a “ripple” from the

LSB to the MSB. This slows down the speed of addition.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

How to overcome this? Consider the following:

c1 = a0.b0 + a0.c0 + b0.c0

= a0.b0 + (a0 + b0).c0

= g0 + p0.c0 (where g0 = a0.b0, p0 = a0+b0)

c2 = a1.b1 + (a1 + b1).c1

= g1 + p1.(g0 + p0.c0)

= g1 + p1.g0 + p1.p0.c0

c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

c32 = ?

It will be complex. But you can use a two-level circuit to

generate c4. This will expedite addition. But it is

impractical due to the complexity.

Practical circuits use a two-phase approach. See the

example of the 16-bit adder, designed from four 4-bit

adders in p.246. Let

G0 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0

G1 = g7 + p7.g6 + p7.p6.g5 + p7.p6.p5.g4

G2 = g11 + p11.g10 + p11.p10.g9 + p11.p10.p9.g8

G3 = g15 + p15.g14 + p15.p14.g13 + p15.p14.p13.g12

P0 = p3.p2.p1.p0

P1 = p7.p6.p5.p4

P2 = p11.p10.p9.p8

P3 = p15.p14.p13.p12

Then

C1 = G0 + P0.c0

C2 = G1 + P1.G0 + P1.P0.c0

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.c0

C4 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.c0

This is implemented in the carry look-ahead adder.

See the figure in p. 246 of your textbook.

How much faster is the carry look-ahead adder?

Multiplication

Be familiar with shift operations first

Shift right shift left

1 0 0 1 (multiplicand)
0 1 0 1 (multiplier)

1 0 0 1
 0 0 0 0

 1 0 0 1
 0 0 0 0
 0 1 0 1 1 0 1

See the diagrams in page 254 and 255 of your textbook,

and learn how a multiplier works.

0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1

0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1

Floating point representation

A scheme for representing a number very small to very large.

It is widely used in the scientific world. Consider, the floating

point number

 Exponent E significand F

In decimal it means (+/-) 1. yyyyyyyyyyyy x 10xxxx

In binary, it means (+/-) 1. yyyyyyyyyyyy x 2xxxx

(The 1 is implied)

IEEE 754 representation

Single precision

 1 8 23 bits

Largest = 1.111… x 2+127
ª 2 x 10 +38

Smallest = 1.000 … x 2 –128 ª 1 x 10 -38

These can be positive and negative, depending on s.

+/- x x x x y y y y y y y y y y y y

s xxxxxxxx yyyyyyyyyyyyyyyyyyyyyyy

IEEE 754 double precision (64 bits)

1 11 bits 52 bits

Largest = 1.111… x 2 +1023

Smallest = 1.000… X 2 –1024

What do you mean by overflow and underflow in FP?

An overflow occurs when the number if too large to fit in

the frame. An underflow occurs when the number is too

small to fit in the given frame.

S exponent significand

Biased Representation

Exponent = 11111111 2 –1 awkward for sorting

Exponent = 00000000 2 0

However, to facilitate sorting, IEEE 754 treats 00…0 as the most

negative, and 1,11..1 as the most positive exponent. This amounts

to using a bias of 127.

00000000 (=-127) 11111111 (=+128)

bias +127

smallest largest

So, value = (1)s x (1+significand) x 2(exponent – bias)

Practice simple conversions from fraction to FP.

Floating Point Addition

Example using decimal

A = 9.999 x 10 1, B = 1.610 x 10 –1, A+B =?

Step 1. Align the smaller exponent with the larger one.

B = 0.0161 x 101 = 0.016 x 101 (round off)

Step 2. Add significands

9.999 + 0.016 = 10.015, so A+B = 10.015 x 101

Step 3. Normalize

A+B = 1.0015 x 102

Step 4. Round off

A+B = 1.002 x 102

Now, try to add 0.5 and –0.4375 in binary.

Floating Point Multiplication

Example using decimal

A = 1.110 x 1010, B = 9.200 x 10-5 A x B =?

Step 1. Exponent of A x B = 10 + (-5) = -5

Step 2. Multiply significands

1.110 x 9.200 = 10.212000

Step 3. Normalize the product

10.212 x 10-5 = 1.0212 x 10-5

Step 4. Round off

A x B = 1.021 x 10-5

Step 5. Decide the sign of A x B (+ x + = +)

So, A x B = + 1.021 x 10-5

Now try to multiply 0.5 with –0.4375 in binary. Use IEEE 754
format.

