Pseudo-instructions

These are simple assembly language instructions that do
not have a direct machine language equivalent. During
assembly, the assembler translates each psedudo-
instruction into one or more machine language

instructions.

Example
move $t0, $t1 # $10 < $+1

The assembler will translate it to
add $t0, $zer0, $t1

We will see more of these soon.

slt $10, $s0, $s1 #if $s0 < $s1 then $t0 =1 else $t0 =0
bne $t0, $zero, label # if $10 = O then goto label

Pseudo-instructions give MIPS a richer set of assembly

language instructions.

Loading a 32-bit constant into a register

Quite often, we would like to load a constant

value into a register (or a memory location)

lui $s0, 42 # load upper-half immediate

ori $s0, $s0, 18 # (one can also use andi)

What is the end result?

Compiling a switch statement

switch (k) {
case 0: f =i+ j; break;
case I: f =g+ h; break;
case 2: f =g- h; break;

case 3: f =i~ j; break:

New instruction slt $s1, $s2, $s3 (set less than)
(if $s2 < $s3 then set $s1 1o 1)

Assume, $s0-$s5 contain f, g, h, i, j, k. Let $t2 contain 4.

slt $13, $s5, $zero #ifk < 0 then $t3 = 1 else $t3=0
bne $13, $zero, Exit #if k<0 then Exit

slt $13, $s5, $t2 # if k<4 then $t3 = 1 else $t3=0
beq $t3, $zero, Exit #ifk= 4 the Exit

What next? Jump to the right case!

f=1+]
LO

J Exit

f=g+h
Ly |8

j Exit
Exit

MEMORY

)
32-bit address LO
32-bit address L1 jumpTab|e
32-bit address L2
32-bit address L3
J

Base address
of the
jumptable

register $t4

Here is the remainder of the program;

add $t1, $s5, $s5
add $11, $11, $11
add $t1, $11, $14
lw $10, O($11)

jr $t0

LO: add $s0, $s3, $s4
J Exit

L1: add $s0, $s1, $s2
J Exit

L2: sub $s0, $s1, $s2
J Exit

L3: sub $s0, $s3, $s4

Exit: <next instruction>

#t1=2%
#t1 =4%
t1 = base address + 4*k

load the address pointed
by t1 into register t0
jump to addr pointed by t0

#f=i+]

#f=g+h

#f=g-h

Hi=i-]

The instruction formats for jump and branch

J 10000 is represented as

2 2500

6-bits 26 bits

This is the J-type format of MIPS instructions.

Conditional branch is represented using I-type format:

bne $s0, $s1, Label is represented as
5 | 16 |17
6 5 b5 16-bit offset

Current PC + (4 * offset) determines the branch target Label

This is called PC-relative addressing.

Revisiting machine lanquage of MIPS

starts from 80000

Loop: add $t1, $s3, $s3 MBS
this program
add $t1, $11, $t1 do?
add $11, $11, $s6
lw $10, O($11)
bne $10, $s5, Exit
add $s3, $s3, $s4
j L
! . Machine
Exit: language
version
6 5 5 b5 5 6
80000 O | 19]19|,9| 0 | 32 R-type
80004 O[99 |9 0|32 R-type
80008 O 9 |22/9| 0 | 32 R-type
80012 35| 9 | 8 0 I-type
80016 5 18 |21 2 (why?) I-type
80020 O | 19]20|19|0 | 32 R-type
80024 2 20000 (why?) J-type
80028

Addressing Modes

What are the different ways to access an operand?

* Register addressing
Operand is in register

add $s1, $s2, $s3 means $sl — $s2 + $s3

e Base addressing
Operand is in memory.
The address is the sum of a register and a constant.

lw $s1, 32($s3) means $s1 — M[s3 + 32]

As special cases, you can implement

Direct addressing $s1 — M[32]

Indirect addressing $s1 < M[s3]

Which helps implement pointers.

 Immediate addressing
The operand is a constant.

How can you execute $s1 < 7?

addi $s1, $zero, 7 means $s1 <~ 0+ 7
(add immediate, uses the I-type format)

e PC-relative addressing
The operand address = PC + an of fset
Implements position-independent codes. A small

offset is adequate for short loops.

* Pseudo-direct addressing

Used in the J format. The target address is the
concatenation of the 4 MSB's of the PC with the 28-bit
offset. This is a minor variation of the PC-relative

addressing format.

