
Graph Algorithms

Graph Algorithms
Many problems in networks can be modeled as graph
problems.

- The topology of a distributed system is a graph.

- Routing table computation uses the shortest	path	algorithm
- Efficient broadcasting uses a spanning	tree	of	a	graph
- maxflow		algorithm determines the maximum	flow	between a

pair of nodes in a graph, etc etc.

- graph coloring, maximal independent set etc have many
applications

Routing

• Shortest path routing
• Distance vector routing
• Link state routing
• Routing in sensor networks
• Routing in peer-to-peer networks

Internet routing

Autonomous System Autonomous System

Autonomous SystemAutonomous System

AS0 AS1

AS2 AS3

Intra-AS vs. Inter-AS routing

Each belongs to a single
administrative domain

Open Shortest Path First (OSPF) is an adaptive routing
protocol for Internet Protocol (IP) network

Routing: Shortest Path
Classical algorithms like Bellman-Ford, Dijkstra’s shortest-path algorithm etc are found
in most algorithm books.

In an (ordinary) graph algorithm
the entire graph is visible to the process

In a distributed graph algorithm only one
node and its neighbors are visible to a process

Routing: Shortest Path
Most distributed algorithms for shortest path are adaptations of Bellman-Ford algorithm.
It computes single-source shortest paths in a weighted graphs. Designed for directed graphs.
Computes shortest path if there are no cycle of negative weight.

Let D(j) = shortest distance of node j from initiator 0. D(0) = 0. Initially, ∀i ≠ 0,
D(i) =∞. Let w(i, j) = weight of the edge from node i to node j

0

j

k

w(0,m),0

(w(0,j)+w(j,k)), j

The edge weights can represent
latency or distance or some other
appropriate parameter.

minitiator
(w(0,j), 0

(w(0,j)+w(j,p)), j

p

Parent relation

Sender’s id

Shortest path

Computes the
shortest
distance from all
nodes
to the initiator
node

The parent links help the packets reach the initiator

Shortest path

Synchronous or asynchronous?
The time and message complexities
depend on the model.
The goal is to lower the complexity

[Synchronous version] In each round every process i sends out
D(i) + w(i,j),j to each neighbor j

Observation: for a node i, once D(parent(i)) becomes stable, it
takes one more round for D(i,0) to be stable

Message complexity = O(|V|)(|E|)

Complexity of Bellman-Ford
Theorem. The message complexity of asynchronous Bellman-Ford algorithm
is exponential.

Proof outline. Consider a topology with an odd number of nodes 0 through n-
1 (the unmarked edges have weight 0)

202k-1 22 212k

0 n-542 n-3 n-1

1 3 5 n-4 n-2

An adversary can regulate the speed of the messages D(n-1) reduces from
(2k+1- 1) to 0 in steps of 1. Since k = (n-3)/2, it will need 2(n-1)/2-1 messages to
reach the goal. So, the message complexity is exponential.

Shortest path
Chandy & Misra’s algorithm : basic idea
(includes termination detection)
Process 0 sends w(0,i),0 to each neighbor i
{for process i > 0}

do message = (S ,k)� S < D →

if parent ≠ k→ send ack to parent fi;

parent := k; D := S;

send (D + w(i,j), i) to each neighbor j ≠ parent;

deficit := deficit + |N(i)| -1

[] message (S,k)� S ≥ D→ send ack to sender

[] ack → deficit := deficit – 1

[] deficit = 0� parent ≠ i→ send ack to parent

od

0

2

4

31

65

2

4

7 1

2 7

6 2

3

Combines shortest path computation
with termination detection. Termination
is detected when the initiator receives
ack from each neighbor

Shortest path

An important issue is: how well do such

algorithms perform when the topology changes?

No real network is static!

Let us examine distance vector routing that

is adaptation of the shortest path algorithm

Distance Vector Routing

Distance Vector D for each node i contains N elements D[i,0], D[i,1], … D[i, N-1].

Here, D[i,j] denotes the distance from node i to node j.

- Initially ∀i, D[i,j] =0 when j=i

D(i,j) = 1 when j ∈N(i). and

D[i,j] = ∞ when j ∉ N(i) ∪{i}

- Each node j periodically sends its distance vector to its immediate neighbors.

- Every neighbor i of j, after receiving the broadcasts from its neighbors, updates its
distance vector as follows: ∀k ≠ i: D[i,k] = minj(w[i,j] + D[j,k])

Used in RIP, IGRP etc

Distance Vector Routing

What if the topology changes?
Assume that each edge has weight = 1. Currently,

Node 1: d(1,0) = 1, d(1, 2) = 1, d(1,3) =

2

Node 2: d(2,0) = 1, d(2,1) =1, d(2,3) = 1

Node 3: d(3,0) = 2, d(3,1) = 2, d(3,2) = 1

Counting to infinity

Node 1 thinks d(1,3) = 2 (old value)
Node 2 thinks d(2,3) = d(1,3) +1 = 3
Node 1 thinks d(1,3) = d(2,3) +1 = 4

and so on. So it will take forever for the
distances to stabilize. A partial remedy is
the split horizon method that prevents
node 1 from sending the advertisement
about d(1,3) to 2 since its first hop (to 3) is
node 2

Observe what can happen when the link (2,3) fails.

∀k≠ i: D[i,k] = minj(w[i,j] + D[j,k])

Suitable for smaller networks. Larger volume of data
is disseminated, but to its immediate neighbors only.
Poor convergence property.

D[j,k]=3 means
j thinks k is 3

hops away

Link State Routing

Each node i periodically broadcasts the weights of all edges (i,j)
incident on it (this is the link state) to all its neighbors. Each
link state packet (LSP) has a sequence number seq. The
mechanism for dissemination is flooding.

This helps each node eventually compute the topology of the
network, and independently determine the shortest path to
any destination node using some standard graph algorithm
like Dijkstra’s.

Smaller volume data disseminated over the entire network
Used in OSPF of IP

Link State Routing: the challenges

(Termination of the reliable flooding)
How to guarantee that LSPs don’t circulate forever?

A node forwards a given LSP at most once. It remembers the last LSP that
it forwarded for each node.
(Dealing with node crash)
When a node crashes, all packets stored in it may be lost. After it is repaired,
new packets are sent with seq = 0. So these new packets may be discarded
in favor of the old packets! Problem resolved using TTL

See: http://www.ciscopress.com/articles/article.asp?p=24090&seqNum=4

http://www.ciscopress.com/articles/article.asp?p=24090&seqNum=4

Interval Routing

Conventional routing tables have

a space complexity O(n).

Can we route using a “smaller” routing
table? This is relevant since the
network sizes are constantly
growing. One solution interval
routing.

condition port
number

Destination > id 0

destination < id 1

destination = id (local
delivery)

(Santoro and Khatib)

Interval Routing: Main idea

• Determine the interval to which the destination belongs.
• For a set of N nodes 0 . . N-1, the interval [p,q) between p and q

(p, q < N) is defined as follows:

• if p < q then [p,q) = p, p+1, p+2, q-2, q-1
• if p ≥ q then [p,q) = p, p+1, p+2, ..., N-1, N, 0, 1, ..., q-2, q-1

[3,5)

[5,1)

[1,3)

Example of Interval Routing

N=11

Labeling is the crucial part

Labeling algorithm

Label the root as 0.
Do a pre-order traversal of the tree. Label successive nodes as 1, 2, 3
For each node, label the port towards a child by the node number of the child.
Then label the port towards the parent by L(i) + T(i) + 1 mod N, where

- L(i) is the label of the node i,

- T(i) = # of nodes in the subtree under node i (excluding i),

Question 1. Why does it work?

Question 2. Does it work for non-tree topologies too? YES, but the

construction is a bit more complex.

Another example

Interval routing on a ring. The routes are not optimal. To make it
optimal, label the ports of node i with i+1 mod 8 and i+4 mod 8.

Example of optimal routing

Optimal interval routing scheme on a ring of six nodes

So, what is the problem?

Works for static topologies. Difficult to
adapt to changes in topologies.

Some recent work on compact routing addresses dynamic
topologies (Amos Korman, ICDCN 2009)

Prefix routing
Easily adapts to changes in topology, and uses small routing tables, so

it is scalable. Attractive for large networks, like P2P networks.

When new nodes are added
or existing nodes are deleted,
changes are only local.

Label the root by λ, the empty string
Label each child of node with label L

by L.x (x is a unique for each child.
Label the port to connecting to a child

by the label of the child.
Label the port to the parent by λ

a

a

b

b

a.a

a.a

a.b

a.b

b.a

b.a

b.b

b.b

b,c

b,c

b.b.a

b.b.a

b.b.b

b.b.b

λ = the empty string

Prefix routing

{Let X = destination, and Y = current node}

if X=Y à local delivery

[] X ≠ Y à Find a port p labeled with the

longest prefix of X

Forward the message to p

fi

{A packet arrives at the current node}a

a

b

b

a.a

a.a

a.b

a.b

b.a

b.a

b.b

b.b

b,c

b,c

b.b.a

b.b.a

b.b.b

b.b.b

λ = the empty string

Prefix routing for non-tree
topology

Does it work on non-tree topologies too? Yes. Start with
a spanning tree of the graph.

a b

a.a

a.b

a.a.a

a.b.a

a b

a.a a.b

a.a.a
a.b.a

λ

λ

λ

λ
λ

λ

a.b.aa.b

a.b

a.a.a

b

If (u,v) is a non-tree edge, then

Label the edge from u to v by the label
of node v. If v is the root, then label the
port from u to its parent p by the label
of p and label the port from u towards
the root by λ.

b

Routing in P2P networks:
Example of Chord

– Small routing tables: log n

– Small routing delay: log n hops

– Load balancing via Consistent Hashing

– Fast join/leave protocol (polylog time)

Consistent Hashing

Assigns an m-bit key to both nodes and objects from.

Order these nodes around an identifier circle (what does
a circle mean here?) according to the order of their keys
(0 .. 2m-1). This ring is known as the Chord Ring.

Object with key k is assigned to the first node whose
key is ≥ k (called the successor node of key k)

Consistent Hashing

N32

N90

N105

D80

D20

D120

Example: Node 90 is the “successor” of document 80.

(0)

N=128
Circular 7-bit

ID space

Consistent Hashing [Karger 97]

Property 1
If there are N nodes and K keys, then with high probability,
each node is responsible for (1+∊)K/N keys.

Property 2
When a node joins or leaves the network, the responsibility
of at most O(K/N) keys changes hand (only to or from the node
that is joining or leaving.

When K is large, the impact is quite small.

Consistent hashing

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key k is stored at its successor (node with key ≥ k)

The log N Fingers

N80

½¼

1/8

1/16
1/32
1/64
1/128

112
N120

Finger i points to successor of n+2i

Chord Finger Table

(0)

N32

N60

N79

N70

N113

N102

N40

N52

33..33 N40
34..35 N40
36..39 N40
40..47 N40
48..63 N52
64..95 N70
96..31 N102

Node n’s i-th entry: first node with id ≥ n + 2i-1

N32’s
Finger Table

N80

N85
N=128

Finger table actually contains
ID and IP address

Routing in Peer-to-peer networks

203310

1-02113
13-0200

130-112

1301-10

13010-1

130102

source

destination

Pastry P2P network

Skip lists and Skip graphs

• Start with a sorted list of nodes.
• Each node has a random sequence number

of sufficiently large length, called its membership vector
• There is a route of length O(log N) that can be discovered

using a greedy approach.

37

Skip List

+∞-∞

L1

L2

L3

+∞31-∞

64 +∞31 34-∞ 23

56 64 78 +∞31 34 44-∞ 12 23 26L0

Example of routing to (or searching for) node 78. At L2, you can only
reach up to 31.. At L1 go up to 64, As +∞ is bigger than 78, we drop
down At L0, reach 78, so the search / routing is over.

(Think of train stations)

38

Properties of skip graphs

1. Skip graph is a generalization of skip list.
2. Efficient Searching.
3. Efficient node insertions & deletions.
4. Locality and range queries.

39

Routing in Skip Graphs

A
001

J
001

M
011

G100 W
101

R
110Le

ve
l 1

G
R

W
A J M

000 001 011

101

110

100Le
ve

l 2

A G J M R W
001 001 011100 110 101

Le
ve

l 0

Membership vectors

Link at level i to nodes with matching prefix of length i.
Think of a tree of skip lists that share lower layers.

Random
sequence
numbers

40

Properties of skip graphs

1. Efficient routing in O(log N) hops w.h.p.
2. Efficient node insertions & deletions.
3. Independence from system size.
4. Locality and range queries.

Spanning tree construction

Chang’s algorithm {The root is known}
{Uses probes and echoes, and mimics the approach
in Dijkstra-Scholten’s termination detection algorithm} {initially ∀i, parent (i) = i}
{program of the initiator}
Send probe to each neighbor;
do number of echoes ≠ number of probes à

echo received à echo := echo +1
probe received à send echo to the sender

od
{program for node j, after receiving a probe }
first probe --> parent: = sender; forward probe to non-parent neighbors;
do number of echoes ≠ number of probes à

echo received à echo := echo +1
probe received à send echo to the sender

od
Send echo to parent; parent(i):= i Question: What if the root is not designated?

Parent pointer

Graph traversal

Many applications of exploring an unknown graph by a visitor
(a token or mobile agent or a robot). The goal of traversal
is to visit every node at least once, and return to the starting point.

Main issues
- How efficiently can this be done?
- What is the guarantee that all nodes will be visited?
- What is the guarantee that the algorithm will terminate?

Think about web-crawlers, exploration of social networks,
planning of graph layouts for visualization or drawing etc.

Graph traversal

Review DFS (or BFS) traversals. These are well known,

so we will not discuss them. There are a few papers that

improve the complexity of these traversals

Graph traversal

Rule 1. Send the token towards
each neighbor exactly once.

Rule 2. If rule 1 is not applicable,
then send the token to the
parent.

Tarry’s algorithm is one of the oldest (1895)

A possible route is: 0 1 2 5 3 1 4 6 2 6 4 1 3 5 2 1 0

The parent relation induces a spanning tree.

