
MIPS Instruction formats
R-type format

6 5     5      5   5 6

src    src    dst

Used by add, sub etc.

I-type format

6 5     5 16

     base   dst     offset

Used by lw (load word), sw (store word) etc

There is one more format: the J-type format. Each MIPS

instruction must belong to one of these formats.

opcode    rs       rt rd  shift amt      function

opcode    rs       rt   address



The instruction format for jump

J 10000 is represented as

6-bits 26 bits

This is the J-type format of MIPS instructions.

Conditional branch is represented using I-type format:

bne $s0, $s1, 1234 is represented as

6 5 5 16-bit offset

PC + offset determines the branch target.

This is called PC-relative addressing.

2 10000

5 16 17 offset



Revisiting machine language of MIPS
(check out pp 101-105)

Loop: add $t1, $s3, $s3    # starts from 80000

add $t1, $t1, $t1

add $t1, $t1, $s6

lw $t0, 0($t1)

bne $t0, $s5, Exit

add $s3, $s3, $s4

j Loop

Exit:

6 5 5 5 5 6

80000 0 19 19 9 0 32 R-type

80004 0 9 9 9 0 32 R-type

80008 0 9 22 9 0 32 R-type

80012 35 9 8 0 I-type

80016 5 8 21 2 I-type

80020 0 19 20 19 0 32 R-type

80024 2 20000 J-type

80028



MIPS Addressing Modes

What are the different ways to access an operand?

• Register addressing

Operand is in register

add $s1, $s2, $s3 means $s1 ¨ $s2 + $s3

• Base addressing

Operand is in memory.

The address is the sum of a register and a constant.

lw $s1, 32($s3) means $s1 ¨ M[s3 + 32]

As special cases, you can implement

Direct addressing $s1 ¨ M[32]

Indirect addressing $s1 ¨ M[s3]

Which helps implement pointers.



• Immediate addressing

The operand is a constant.

How can you execute $s1 ¨ 7?

addi $s1, $zero, 7 means $s1 ¨ 0 + 7

(add immediate, uses the I-type format)

• PC-relative addressing

The operand address = PC + an offset

Implements position-independent codes. A small

offset is adequate for short loops.



Procedure Call

       Main

procedure

Uses a stack.  What is a stack?



The stack

Occupies a part of the main memory. In MIPS, it grows

from high address to low address as you push data on the

stack. Consequently, the content of the stack pointer

($sp) decreases.

   High address

Stack pointer

(r29)

         $sp

   Low address

Item 1

Item 2



Use of the stack in procedure call

Before the subroutine executes, save registers.

Jump to the subroutine using jump-and-link (jal address)

(jal address means ra ¨ PC + 4; PC ¨ address)

After the subroutine executes, restore the registers.

Return from the subroutine using jr (jump register)

(jr ra means PC ¨ (ra))

Example

int leaf (int g, int h, int i, int j)

{

int f;

f = (g + h) – (i + j);

return f;

}

The arguments g, h, i, j are put in $a0-$a3.

The result f is put into $s0, and returned to $v0.



The structure of the procedure

Leaf: subi $sp, $sp, 12 # $sp = $sp-12, make room

sw $t1, 8($sp) # save $t1 on stack

sw $t0, 4($sp) # save $t0 on stack

sw $s0, 0($sp) # save $s0 on stack

Now we can use the registers $t1, $t0, $s0 in the body

of the procedure.

add $t0, $a1, $a2 # $t0 = g + h

add $ t1, $a2, $a3 # $t1 = i + j

sub $s0, $t0, $t1 # $s0 = (g + h) – (i + j)

Return the result into the register $v0.

add $v0, $s0, $zero # returns f = (g+h)-(i+j) to $v0



High

sp

P

Low

High

t1

t0

s0    sp

Low

t1

t0

s0

t1

t0

s0



Now restore the old values of the registers by popping

the stack.

lw $s0, 0($sp) # restore $s0

lw $t0, 4($sp) # restore $t0

lw $t1, 8($sp) # restore $t1

addi $sp, $sp, 12 # adjust $sp

Finally, return to the main program.

jr $ra # return to caller.



A recursive procedure

Example. Compute factorial (n)

int fact (int n)

{

if (n < 1) return (1);

else return (n * fact(n-1))

}

(Plan) Put n in $a0. Result should be available in $v0.

fact: sub $sp, $sp, 8    $fp

sw $ra, 4($sp)

sw $a0, 0($sp)     $sp

a0

ra



calling program procedure fact

4000

4004

1000

1004

4024

a0

v0

  $sp

…
…

a0 = n (3)

jal fact (4000)

read fact(n) from v0

push ra

push a0

if n<1 then {v0=1

Return to ra}

a0=n-1

jal fact (4000)

v0=old a0* fact(n-1)

return to old ra

a0 = 1

ra= 4024

a0 = 2

ra = 4024

a0 = 3

ra = 1004

3

result



Now test if n < 1 (i.e. n = 0). In that case return 0 to $v0

slti $t0, $a0, 1 # if n ≥ 1 then goto L1

beq $t0, $zero, L1

addi $v0, $zero, 1 # return 1 to $v0

addi $sp, $sp, 8 # pop 2 items from stack

jr $ra # return

L1: subi $a0, $a0, 1 # decrement n

jal fact # call fact with (n – 1)

Now, we need to compute n * fact (n-1)

lw $a0, 0($sp) # restore argument n

lw $ra, 4($sp) # restore return address

addi $sp, $sp, 8 # pop 2 items

mult $v0, $a0, $v0 # return n * fact(n-1)

jr $ra # return to caller


