Reverse plane partitions via representations of quivers

Al Garver, University of Michigan (joint with Rebecca Patrias and Hugh Thomas)

arXiv: 1812.08345

Conference on Geometric Methods in Representation Theory

November 24, 2019

Outline

- nilpotent endomorphisms of quiver representations
- minuscule posets and Auslander-Reiten quivers
- reverse plane partitions on minuscule posets
- periodicity of promotion

- $\Lambda = \mathbb{k}Q/I$ a finite dimensional algebra, $\overline{\mathbb{k}} = \mathbb{k}$
- $X = ((X_i)_i, (f_a)_a) \in \operatorname{rep}(Q, I) \simeq \operatorname{mod}\Lambda$
- $\phi = (\phi_i)_i$ a nilpotent endomorphism of X
- NEnd(X) all nilpotent endomorphisms of X

Q

Lemma

The space NEnd(X) is an irreducible algebraic variety.

For each i, $\phi_i \rightsquigarrow \lambda^i = (\lambda_1^i \geqslant \cdots \geqslant \lambda_r^i)$ where partition λ^i records the sizes of the Jordan blocks of ϕ_i .

$$JF(\phi) := (\lambda^1, \dots, \lambda^n)$$
 the **Jordan form data** of ϕ

For $\lambda = (\lambda_1 \geqslant \cdots \geqslant \lambda_r)$ and $\lambda' = (\lambda'_1 \geqslant \cdots \geqslant \lambda'_{r'})$, one has $\lambda \leqslant \lambda'$ in **dominance order** if $\lambda_1 + \cdots + \lambda_\ell \leqslant \lambda'_1 + \cdots + \lambda'_\ell$ for each $\ell \geqslant 1$.

Theorem (G.–Patrias–Thomas, '18)

There is a unique maximum value of $JF(\cdot)$ on NEnd(X) with respect to componentwise dominance order, denoted by GenJF(X). It is attained on a dense open subset of NEnd(X).

Question

For which subcategories C of rep(Q, I) is it the case that any object $X \in C$ may be recovered from GenJF(X)? We say such a subcategory is **Jordan** recoverable.

Example

Usually GenJF(X) is not enough information to recover X. Let $Q = 1 \leftarrow 2$.

- $X = \mathbb{k} \stackrel{1}{\leftarrow} \mathbb{k}$ has GenJF(X) = ((1),(1))
- $X' = \mathbb{k} \stackrel{0}{\leftarrow} \mathbb{k}$ has GenJF(X') = ((1), (1))

Theorem (G.-Patrias-Thomas '18)

Let Q be a Dynkin quiver and m a **minuscule vertex** of Q. The category $C_{Q,m}$ of representations of Q all of whose indecomposable summands are supported at m is Jordan recoverable.

Moreover, we classify the objects in $C_{Q,m}$ in terms of the combinatorics of the **minuscule poset** associated with Q and m.

The minuscule posets are defined by choosing a simply-laced Dynkin diagram and a minuscule vertex m.

A **reverse plane partition** is an order-reversing map $\rho: \mathsf{P} \to \mathbb{Z}_{\geq 0}$. The objects of $\mathcal{C}_{Q,m}$ will be parameterized by **reverse plane partitions** defined on the minuscule poset associated with Q and m.

Lemma

Given a Dynkin quiver Q and a minuscule vertex m, the Hasse quiver of the minscule poset $P_{Q,m}$ is isomorphic to the full subquiver of $\Gamma(Q)$ on the representations supported at m.

There is a map $\tau : \Gamma(Q)_0 \to \Gamma(Q)_0$ called the **Auslander–Reiten** translation.

The Auslander–Reiten translation partitions the indecomposables into τ -orbits.

$$Q_0 \longleftrightarrow \{\tau\text{-orbits}\}$$

Theorem (G.–Patrias–Thomas '18)

The objects of $C_{Q,m}$ are in bijection with $RPP(P_{Q,m})$ via $X \mapsto \rho$ – reverse plane partition from filling the τ -orbits of $P_{Q,m}$ with the Jordan block sizes in GenJF(X)

Promotion (pro = $t_4t_3t_2t_1$)

Theorem (G.–Patrias–Thomas '18)

We have $pro^h = id$ where h is the Coxeter number of the root system.

Thanks!

