Representation varieties of algebras with nodes

András Cristian Lőrincz

Purdue University

Joint work with Ryan Kinser

Conference on Geometric Methods in Representation Theory, University of lowa, November 2018

Basics

- \mathbb{k} is an algebraically closed field. $\operatorname{Mat}(m, n)$ denotes the variety of matrices with m rows, n columns, and entries in \mathbb{k}.
- \mathbb{k} is an algebraically closed field. $\operatorname{Mat}(m, n)$ denotes the variety of matrices with m rows, n columns, and entries in \mathbb{k}.
- Given a quiver Q and dimension vector $\mathbf{d}: Q_{0} \rightarrow \mathbb{Z}_{\geq 0}$, we study the representation variety

$$
\operatorname{rep}_{Q}(\mathbf{d})=\prod_{\alpha \in Q_{1}} \operatorname{Mat}(\mathbf{d}(h \alpha), \mathbf{d}(t \alpha))
$$

- \mathbb{k} is an algebraically closed field. $\operatorname{Mat}(m, n)$ denotes the variety of matrices with m rows, n columns, and entries in \mathbb{k}.
- Given a quiver Q and dimension vector $\mathbf{d}: Q_{0} \rightarrow \mathbb{Z}_{\geq 0}$, we study the representation variety

$$
\operatorname{rep}_{Q}(\mathbf{d})=\prod_{\alpha \in Q_{1}} \operatorname{Mat}(\mathbf{d}(h \alpha), \mathbf{d}(t \alpha))
$$

- The action of the base change group

$$
G L(\mathbf{d})=\prod_{z \in Q_{0}} G L(\mathbf{d}(z))
$$

acts on $\operatorname{rep}_{Q}(\mathbf{d})$ by

$$
g \cdot M=\left(g_{h \alpha} M_{\alpha} g_{t \alpha}^{-1}\right)_{\alpha \in Q_{1}}
$$

where $g=\left(g_{z}\right)_{z \in Q_{0}} \in G L(\mathbf{d})$ and $M=\left(M_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{rep}_{Q}(\mathbf{d})$.

General questions

- For an algebra $A=\mathbb{k} Q / I$ with corresponding quiver with relations (Q, R) we consider the representation variety

$$
\operatorname{rep}_{A}(\mathbf{d})=\left\{M \in \prod_{\alpha \in Q_{1}} \operatorname{Mat}(\mathbf{d}(h \alpha), \mathbf{d}(t \alpha)) \mid M(r)=0, \forall r \in R\right\}
$$

General questions

- For an algebra $A=\mathbb{k} Q / I$ with corresponding quiver with relations (Q, R) we consider the representation variety
$\operatorname{rep}_{A}(\mathbf{d})=\left\{M \in \prod_{\alpha \in Q_{1}} \operatorname{Mat}(\mathbf{d}(h \alpha), \mathbf{d}(t \alpha)) \mid M(r)=0, \forall r \in R\right\}$
- Under the action of $G L(\mathbf{d})$, orbits correspond to isomorphism classes of representations.

General questions

- For an algebra $A=\mathbb{k} Q / I$ with corresponding quiver with relations (Q, R) we consider the representation variety

$$
\operatorname{rep}_{A}(\mathbf{d})=\left\{M \in \prod_{\alpha \in Q_{1}} \operatorname{Mat}(\mathbf{d}(h \alpha), \mathbf{d}(t \alpha)) \mid M(r)=0, \forall r \in R\right\}
$$

- Under the action of $G L(\mathbf{d})$, orbits correspond to isomorphism classes of representations.
- In general $\operatorname{rep}_{A}(\mathbf{d})$ is not irreducible. We want to study its irreducible components, orbit closures, and their singularities.

General questions

- For an algebra $A=\mathbb{k} Q / I$ with corresponding quiver with relations (Q, R) we consider the representation variety

$$
\operatorname{rep}_{A}(\mathbf{d})=\left\{M \in \prod_{\alpha \in Q_{1}} \operatorname{Mat}(\mathbf{d}(h \alpha), \mathbf{d}(t \alpha)) \mid M(r)=0, \forall r \in R\right\}
$$

- Under the action of $G L(\mathbf{d})$, orbits correspond to isomorphism classes of representations.
- In general $\operatorname{rep}_{A}(\mathbf{d})$ is not irreducible. We want to study its irreducible components, orbit closures, and their singularities.
- Determine generic decompositions, and moduli space decompositions of semi-stable representations.

Nodes

A node of an algebra $A=\mathbb{k} Q / l$ is a vertex x of Q such that all the paths of length 2 passing strictly through x belong to l.

Nodes

A node of an algebra $A=\mathbb{k} Q / I$ is a vertex x of Q such that all the paths of length 2 passing strictly through x belong to l. A node x of A can be split by the following operation around x :

\leadsto

Nodes

A node of an algebra $A=\mathbb{k} Q / I$ is a vertex x of Q such that all the paths of length 2 passing strictly through x belong to l. A node x of A can be split by the following operation around x :

A
\leadsto
\leadsto

A^{x}

Theorem (Martínez-Villa '80)

There is a bijection between the set of isomorphism classes of indecomposable representations of A and the set of isomorphism classes of indecomposable representations of A^{x} with the simple representation supported at x_{h} removed.

Theorem (Martínez-Villa '80)

There is a bijection between the set of isomorphism classes of indecomposable representations of A and the set of isomorphism classes of indecomposable representations of A^{x} with the simple representation supported at x_{h} removed.

Question: What is the relation between the geometry of representation varieties of A and A^{\times}?

Theorem (Martínez-Villa '80)

There is a bijection between the set of isomorphism classes of indecomposable representations of A and the set of isomorphism classes of indecomposable representations of A^{x} with the simple representation supported at x_{h} removed.

Question: What is the relation between the geometry of representation varieties of A and A^{\times}?

Example

Take the following quiver with relation $a b=0$

$$
1 \xrightarrow{a} 2 \xrightarrow{b} 3
$$

Splitting vertex 2, we get two quivers $1 \rightarrow 2_{h} \quad 2_{t} \rightarrow 3$; representation varieties for these are affine spaces. However, representation varieties for the original quiver have multiple irreducible components and are singular.

Setup

Assume $x \in Q_{0}$ is a node of A, and take r with $0 \leq r \leq \mathbf{d}(x)$. We denote by \mathbf{d}_{r}^{x} the dimension vector of Q^{x} obtained by putting $\mathbf{d}^{x}\left(x_{h}\right)=r, \mathbf{d}^{x}\left(x_{t}\right)=\mathbf{d}(x)-r$, and at the rest of the vertices \mathbf{d}^{x} coincides with \mathbf{d}.

Setup

Assume $x \in Q_{0}$ is a node of A, and take r with $0 \leq r \leq \mathbf{d}(x)$. We denote by \mathbf{d}_{r}^{x} the dimension vector of Q^{x} obtained by putting $\mathbf{d}^{x}\left(x_{h}\right)=r, \mathbf{d}^{x}\left(x_{t}\right)=\mathbf{d}(x)-r$, and at the rest of the vertices \mathbf{d}^{x} coincides with \mathbf{d}. We have i : $\operatorname{rep}_{A^{x}}\left(\mathbf{d}_{r}^{X}\right) \hookrightarrow \operatorname{rep}_{A}(\mathbf{d})$:

$$
i(M)_{\alpha}= \begin{cases}M_{\alpha} & t \alpha \neq x \neq h \alpha \\
{\left[\begin{array}{ll}
M_{\alpha} \\
0
\end{array}\right]} & h \alpha=x \text { and } t \alpha \neq x, \\
{\left[\begin{array}{ll}
M_{\alpha}
\end{array}\right]} & t \alpha=x \text { and } h \alpha \neq x \\
{\left[\begin{array}{ll}
0 & M_{\alpha} \\
0 & 0
\end{array}\right]} & t \alpha=x \text { and } h \alpha=x\end{cases}
$$

Assume $x \in Q_{0}$ is a node of A, and take r with $0 \leq r \leq \mathbf{d}(x)$. We denote by \mathbf{d}_{r}^{x} the dimension vector of Q^{x} obtained by putting $\mathbf{d}^{\times}\left(x_{h}\right)=r, \mathbf{d}^{\times}\left(x_{t}\right)=\mathbf{d}(x)-r$, and at the rest of the vertices \mathbf{d}^{\times} coincides with d. We have i : $\operatorname{rep}_{A^{x}}\left(\mathbf{d}_{r}^{X}\right) \hookrightarrow \operatorname{rep}_{A}(\mathbf{d})$:

$$
i(M)_{\alpha}= \begin{cases}M_{\alpha} & t \alpha \neq x \neq h \alpha \\
{\left[\begin{array}{ll}
M_{\alpha} \\
0
\end{array}\right]} & h \alpha=x \text { and } t \alpha \neq x, \\
{\left[\begin{array}{ll}
M_{\alpha}
\end{array}\right]} & t \alpha=x \text { and } h \alpha \neq x, \\
{\left[\begin{array}{ll}
0 & M_{\alpha} \\
0 & 0
\end{array}\right]} & t \alpha=x \text { and } h \alpha=x .\end{cases}
$$

Let $P_{r} \leq G L(\mathbf{d}(x))$ be the parabolic subgroup of block upper triangular matrices block size r and $\mathbf{d}(x)-r$. Let $P_{r}^{x}(\mathbf{d}) \leq G L(\mathbf{d})$ be the subgroup where the factor $G L(\mathbf{d}(x))$ is replaced by P_{r}. The variety $\operatorname{rep}_{A^{x}}\left(\mathbf{d}_{r}^{\times}\right)$is in fact $P_{r}^{\times}(\mathbf{d})$-stable subvariety of $\operatorname{rep}_{A}(\mathbf{d})$, as the unipotent radical of P_{r} acts trivially on $\operatorname{rep}_{A^{\times}}\left(\mathbf{d}_{r}^{X}\right)$!

Given subset $S \subset \operatorname{rep}_{A}(\mathbf{d})$, and a node x, we define the x-rank of S to be the number

$$
r_{x}(S):=\max _{M \in S}\left\{\operatorname{rank} \bigoplus_{h \alpha=x} M_{\alpha}: \bigoplus_{h \alpha=x} M_{t \alpha} \rightarrow M_{x}\right\}
$$

Given subset $S \subset \operatorname{rep}_{A}(\mathbf{d})$, and a node x, we define the x-rank of S to be the number

$$
r_{x}(S):=\max _{M \in S}\left\{\operatorname{rank} \bigoplus_{h \alpha=x} M_{\alpha}: \bigoplus_{h \alpha=x} M_{t \alpha} \rightarrow M_{x}\right\} .
$$

Proposition

Let $0 \leq r \leq \mathbf{d}(x)$ and C a $G L\left(\mathbf{d}_{r}^{x}\right)$-stable irreducible closed subvariety of $\operatorname{rep}_{A^{x}}\left(\mathbf{d}_{r}^{\times}\right)$with $r_{x_{t}}(C)=r$. Then the saturation $G L(\mathbf{d}) \cdot C$ is an irreducible closed subvariety of $\operatorname{rep}_{A}(\mathbf{d})$, and the following map is a proper birational morphism of $G L(\mathbf{d})$-varieties:

$$
\Psi_{C}: G L(\mathbf{d}) \times_{P_{r}^{\times}(\mathbf{d})} C \rightarrow G L(\mathbf{d}) \cdot C,(g, M) \mapsto g \cdot M .
$$

Main Correspondence

Theorem (Kinser, L. '18)

For each $0 \leq r \leq \mathbf{d}(x)$, the maps below are mutually inverse, inclusion-preserving bijections.
$\begin{aligned}\left\{\begin{array}{c}\text { irreducible closed } \\ G L\left(\mathbf{d}_{r}^{X}\right) \text {-stable subvarieties } \\ \text { of } \operatorname{rep}_{A^{*}}\left(\mathbf{d}_{r}^{X}\right) \text { of } x_{h}-r a n k r\end{array}\right\} & \leftrightarrow\left\{\begin{array}{c}\text { irreducible closed } \\ G L(\mathbf{d}) \text {-stable subvarieties } \\ \text { of } \operatorname{rep}_{A}(\mathbf{d}) \text { of } x \text {-rank } r\end{array}\right\} \\ C & \mapsto\end{aligned}$

Main Correspondence

Theorem (Kinser, L. '18)

For each $0 \leq r \leq \mathbf{d}(x)$, the maps below are mutually inverse, inclusion-preserving bijections.

In particular, the irreducible components of representation varieties of A are saturations of irreducible components of representation varieties of A^{X}.

An Example

Consider the algebra $A=\mathbb{k} Q / I$, where I is generated by relations declaring that x is a node, along with the relation $a b c=0$.

An Example

Consider the algebra $A=\mathbb{k} Q / I$, where I is generated by relations declaring that x is a node, along with the relation $a b c=0$.

Let $\mathbf{d}=(3,2,2,1,3,3,3)$ (where $\mathbf{d}(x)$ is the last entry). The study of the components of $\operatorname{rep}_{A}(\mathbf{d})$ reduces to type \mathbb{A}_{4} quiver with the following dimension vector, for $r=0,1,2,3$

$$
(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r
$$

An Example (cont.)

$$
(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r \quad a b c=0
$$

- $r=0$, one component C_{0}

An Example (cont.)

$$
(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r \quad a b c=0
$$

- $r=0$, one component C_{0}
- $r=1$, two components:

$$
\begin{aligned}
& C_{1}-(1,1,1,0)^{\oplus 2} \oplus(0,0,1,1) \\
& C_{1}^{\prime}-(1,0,0,0) \oplus(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,0)
\end{aligned}
$$

An Example (cont.)

$$
(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r \quad a b c=0
$$

- $r=0$, one component C_{0}
- $r=1$, two components:

$$
\begin{aligned}
& C_{1}-(1,1,1,0)^{\oplus 2} \oplus(0,0,1,1) \\
& C_{1}^{\prime}-(1,0,0,0) \oplus(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,0)
\end{aligned}
$$

- $r=2$, two components:

$$
\begin{aligned}
& C_{2}-(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,1) \\
& C_{2}^{\prime}-(1,0,0,0) \oplus(0,1,1,1)^{\oplus 2} \oplus(0,0,1,0)
\end{aligned}
$$

An Example (cont.)

$$
(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r \quad a b c=0
$$

- $r=0$, one component C_{0}
- $r=1$, two components:

$$
\begin{aligned}
& C_{1}-(1,1,1,0)^{\oplus 2} \oplus(0,0,1,1) \\
& C_{1}^{\prime}-(1,0,0,0) \oplus(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,0)
\end{aligned}
$$

- $r=2$, two components:

$$
\begin{aligned}
& C_{2}-(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,1) \\
& C_{2}^{\prime}-(1,0,0,0) \oplus(0,1,1,1)^{\oplus 2} \oplus(0,0,1,0)
\end{aligned}
$$

- $r=3$, one component C_{3}.

An Example (cont.)

$$
(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r \quad a b c=0
$$

- $r=0$, one component C_{0}
- $r=1$, two components:

$$
\begin{aligned}
& C_{1}-(1,1,1,0)^{\oplus 2} \oplus(0,0,1,1) \\
& C_{1}^{\prime}-(1,0,0,0) \oplus(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,0)
\end{aligned}
$$

- $r=2$, two components:

$$
\begin{aligned}
& C_{2}-(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,1) \\
& C_{2}^{\prime}-(1,0,0,0) \oplus(0,1,1,1)^{\oplus 2} \oplus(0,0,1,0)
\end{aligned}
$$

- $r=3$, one component C_{3}.

Under saturation, C_{1}^{\prime} is contained in C_{2} and C_{2}^{\prime} is contained in C_{3}.

An Example (cont.)

$$
(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r \quad a b c=0
$$

- $r=0$, one component C_{0}
- $r=1$, two components:

$$
\begin{aligned}
& C_{1}-(1,1,1,0)^{\oplus 2} \oplus(0,0,1,1) \\
& C_{1}^{\prime}-(1,0,0,0) \oplus(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,0)
\end{aligned}
$$

- $r=2$, two components:

$$
\begin{aligned}
& C_{2}-(1,1,1,0) \oplus(0,1,1,1) \oplus(0,0,1,1) \\
& C_{2}^{\prime}-(1,0,0,0) \oplus(0,1,1,1)^{\oplus 2} \oplus(0,0,1,0)
\end{aligned}
$$

- $r=3$, one component C_{3}.

Under saturation, C_{1}^{\prime} is contained in C_{2} and C_{2}^{\prime} is contained in C_{3}. The irreducible components of $\operatorname{rep}_{A}(\mathbf{d})$ are given by saturations of $C_{0}, C_{1}, C_{2}, C_{3}$.

Radical-square algebras

Theorem (Kinser, L. '18)

Take $A=\mathbb{k} Q / \operatorname{rad}^{2}(\mathbb{k} Q)$ and a dimension vector \mathbf{d}. For a dimension vector $\mathbf{r} \leq \mathbf{d}$, let $C_{\mathbf{r}}$ be the closure of the set of representations $M \in \operatorname{rep}_{A}(\mathbf{d})$ such that $r_{x}(M)=\mathbf{r}(x)$, for all $x \in Q_{0}$. Then C_{r} is irreducible. Furthermore, set $\mathbf{s}=\mathbf{d}-\mathbf{r}$, and for $x \in Q_{0}$ let I_{x} be the number of loops at x and put

$$
u_{x}(\mathbf{r})=\sum_{h \alpha=x} \mathbf{s}(t \alpha)-\mathbf{r}(x), \quad \text { and } \quad v_{x}(\mathbf{r})=\sum_{t \alpha=x} \mathbf{r}(h \alpha)-\mathbf{s}(x)
$$

Then the irreducible components of $\operatorname{rep}_{A}(\mathbf{d})$ are given precisely by the irreducibles C_{r} for which \mathbf{r} satisfies the following for all $x \in Q_{0}$:

$$
u_{x}(\mathbf{r}) \geq 0, \text { and when } u_{x}(\mathbf{r})>I_{x} \text { then } v_{x}(\mathbf{r}) \geq 0
$$

Radical-square algebras

Theorem (Kinser, L. '18)

Take $A=\mathbb{k} Q / \operatorname{rad}^{2}(\mathbb{k} Q)$ and a dimension vector \mathbf{d}. For a dimension vector $\mathbf{r} \leq \mathbf{d}$, let $C_{\mathbf{r}}$ be the closure of the set of representations $M \in \operatorname{rep}_{A}(\mathbf{d})$ such that $r_{x}(M)=\mathbf{r}(x)$, for all $x \in Q_{0}$. Then C_{r} is irreducible. Furthermore, set $\mathbf{s}=\mathbf{d}-\mathbf{r}$, and for $x \in Q_{0}$ let I_{x} be the number of loops at x and put

$$
u_{x}(\mathbf{r})=\sum_{h \alpha=x} \mathbf{s}(t \alpha)-\mathbf{r}(x), \quad \text { and } \quad v_{x}(\mathbf{r})=\sum_{t \alpha=x} \mathbf{r}(h \alpha)-\mathbf{s}(x)
$$

Then the irreducible components of $\operatorname{rep}_{A}(\mathbf{d})$ are given precisely by the irreducibles C_{r} for which \mathbf{r} satisfies the following for all $x \in Q_{0}$:

$$
u_{x}(\mathbf{r}) \geq 0, \text { and when } u_{x}(\mathbf{r})>I_{x} \text { then } v_{x}(\mathbf{r}) \geq 0
$$

This is complementary to a representation-theoretic algorithm given by [Bleher, Chinburg, Huisgen-Zimmermann '15]

Example

Consider the radical-square algebra A (all compositions zero)

Example

Consider the radical-square algebra A (all compositions zero)

For $\mathbf{d}=(2,2,2,2), \operatorname{rep}_{A}(\mathbf{d})$ has 13 irreducible components given by the rank sequences:
$(0,0,1,2),(0,0,2,2),(0,1,1,2),(0,2,0,2),(0,2,1,2),(1,0,1,1),(1,0,2,1)$
$(1,1,1,1),(1,2,0,1),(1,2,1,1),(2,0,2,0),(2,1,1,0),(2,2,0,0)$

Example

Consider the radical-square algebra A (all compositions zero)

For $\mathbf{d}=(2,2,2,2), \operatorname{rep}_{A}(\mathbf{d})$ has 13 irreducible components given by the rank sequences:
$(0,0,1,2),(0,0,2,2),(0,1,1,2),(0,2,0,2),(0,2,1,2),(1,0,1,1),(1,0,2,1)$
$(1,1,1,1),(1,2,0,1),(1,2,1,1),(2,0,2,0),(2,1,1,0),(2,2,0,0)$

For $\mathbf{d}=(50,50,50,50)$, we have 60501 irreducible components.

Generic decomposition

Theorem (Kac '80, '82; de la Peña '91; Crawley-Boevey, Schröer '02)

Any irreducible component $C \subseteq \operatorname{rep}_{A}(\mathbf{d})$ satisfies a Krull-Schmidt type decomposition

$$
C=\overline{C_{1} \oplus \ldots \oplus C_{k}}
$$

for some indecomposable irreducible components $C_{i} \subseteq \operatorname{rep}_{A}\left(\mathbf{d}_{i}\right)$.

Generic decomposition

Theorem (Kac '80, '82; de la Peña '91; Crawley-Boevey, Schröer '02)

Any irreducible component $C \subseteq \operatorname{rep}_{A}(\mathbf{d})$ satisfies a Krull-Schmidt type decomposition

$$
C=\overline{C_{1} \oplus \ldots \oplus C_{k}}
$$

for some indecomposable irreducible components $C_{i} \subseteq \operatorname{rep}_{A}\left(\mathbf{d}_{i}\right)$.

Theorem (Kinser, L. '18)

Let $C \subseteq \operatorname{rep}_{A}(\mathbf{d})$ be an irreducible component, $r=r_{x}(C)$ and $C^{x}=C \cap \operatorname{rep}_{A^{x}}\left(\mathbf{d}_{r}^{x}\right)$. Let $C^{x}=\overline{C_{1}^{x} \oplus \cdots \oplus C_{k}^{x}}$ be the generic decomposition of the irreducible component C^{x} in A^{x}. Then $C=\overline{C_{1} \oplus \cdots \oplus C_{k}}$ is the generic decomposition of C, where $C_{i}^{x}=G L(\mathbf{d}) \cdot C$.

Singularities

Assume char $\mathbb{k}=0$.

Theorem (Kinser, L. '18)

Let C be $G L\left(\mathbf{d}_{r}^{\times}\right)$-stable irreducible closed subvariety of $\operatorname{rep}_{A^{\times}}\left(\mathbf{d}_{r}^{\times}\right)$, for some $0 \leq r \leq \mathbf{d}(x)$. If C is normal (resp. has rational singularities), then the same is true for the variety
$G L(\mathbf{d}) \cdot C \subseteq \operatorname{rep}_{A}(\mathbf{d})$.

Singularities

Assume char $\mathbb{k}=0$.

Theorem (Kinser, L. '18)

Let C be $G L\left(\mathbf{d}_{r}^{\times}\right)$-stable irreducible closed subvariety of $\operatorname{rep}_{A^{\times}}\left(\mathbf{d}_{r}^{\times}\right)$, for some $0 \leq r \leq \mathbf{d}(x)$. If C is normal (resp. has rational singularities), then the same is true for the variety $G L(\mathbf{d}) \cdot C \subseteq \operatorname{rep}_{A}(\mathbf{d})$.

For the proof we use a result of [Kempf '76].

Singularities

Assume char $\mathbb{k}=0$.

Theorem (Kinser, L. '18)

Let C be $G L\left(\mathbf{d}_{r}^{x}\right)$-stable irreducible closed subvariety of $\operatorname{rep}_{A^{\times}}\left(\mathbf{d}_{r}^{x}\right)$, for some $0 \leq r \leq \mathbf{d}(x)$. If C is normal (resp. has rational singularities), then the same is true for the variety
$G L(\mathbf{d}) \cdot C \subseteq \operatorname{rep}_{A}(\mathbf{d})$.
For the proof we use a result of [Kempf '76].

Corollary

Let A be a finite-dimensional \mathbb{k}-algebra with $\operatorname{rad}^{2} A=0$. Then for any dimension vector \mathbf{d}, any irreducible component $C \subseteq \operatorname{rep}_{A}(\mathbf{d})$ has rational singularities (and is thus also normal, and Cohen-Macaulay).

Example with orbit closures

Consider the following algebra $A=\mathbb{k} Q / I$. Again / is generated by relations declaring that x is a node, along with the relation $a b c=0$.

Example with orbit closures

Consider the following algebra $A=\mathbb{k} Q / I$. Again / is generated by relations declaring that x is a node, along with the relation $a b c=0$.

Orbit closures of A^{x} are orbit closures for a type \mathbb{D} quiver, and thus have rational singularities by [Bobiński-Zwara '02]. Therefore, all orbit closures for A have rational singularities.

Representation varieties beyond nodes: example

Let A be given by the quiver
 with relations $a_{1} b_{1}=b_{1} c_{1}=b_{1} c_{2}=b_{2} c_{1}=b_{2} c_{2}=b_{3} c_{3}=0$.

Representation varieties beyond nodes: example

Let A be given by the quiver
 with relations $a_{1} b_{1}=b_{1} c_{1}=b_{1} c_{2}=b_{2} c_{1}=b_{2} c_{2}=b_{3} c_{3}=0$.
A has no nodes, but we can separate relations, and so a representation variety of A can be written as a product of representation varieties of

$$
\bullet \xrightarrow{a_{1}} \bullet \stackrel{b_{1}}{b_{2}} \bullet \stackrel{c_{1}}{c_{2}} \bullet \text { and } \bullet \xrightarrow{b_{3}} \bullet \stackrel{c_{3}}{\longrightarrow} \bullet
$$

Representation varieties beyond nodes: example

Let A be given by the quiver
 with relations $a_{1} b_{1}=b_{1} c_{1}=b_{1} c_{2}=b_{2} c_{1}=b_{2} c_{2}=b_{3} c_{3}=0$.
A has no nodes, but we can separate relations, and so a representation variety of A can be written as a product of representation varieties of

$$
\bullet \xrightarrow{a_{1}} \bullet \stackrel{b_{1}}{b_{2}} \bullet \stackrel{c_{1}}{c_{2}} \bullet \text { and } \bullet \xrightarrow{b_{3}} \bullet \stackrel{c_{3}}{\longrightarrow} \bullet
$$

Both quivers have now nodes. Splitting the node in the former, we obtain the product of an affine space with a representation variety of

$$
\bullet \xrightarrow{a_{1}} \bullet \xrightarrow{\stackrel{b_{1}}{b_{2}}} \bullet
$$

Representation varieties beyond nodes: example

Let A be given by the quiver $\bullet \xrightarrow{a_{1}} \bullet \xrightarrow{\frac{b_{1}}{b_{2}}} \bullet \xrightarrow{b_{3}} \bullet \stackrel{\substack{c_{1} \\ c_{2}}}{c_{3}}$ with relations $a_{1} b_{1}=b_{1} c_{1}=b_{1} c_{2}=b_{2} c_{1}=b_{2} c_{2}=b_{3} c_{3}=0$.
A has no nodes, but we can separate relations, and so a representation variety of A can be written as a product of representation varieties of

$$
\bullet \xrightarrow{a_{1}} \bullet \stackrel{b_{1}}{b_{2}} \bullet \stackrel{c_{1}}{c_{2}} \bullet \text { and } \bullet \xrightarrow{b_{3}} \bullet \stackrel{c_{3}}{\longrightarrow} \bullet
$$

Both quivers have now nodes. Splitting the node in the former, we obtain the product of an affine space with a representation variety of

$$
\bullet \xrightarrow{a_{1}} \bullet \xrightarrow{\stackrel{b_{1}}{b_{2}}} \bullet
$$

We can drop b_{2}, and then split the middle, yielding affine spaces. Hence all representation varieties of A have rational singularities.

Semi-stable representations

Choose a weight $\theta \in \mathbb{Z} Q_{0}$ with $\theta \cdot \mathbf{d}=0$. By [King '94], the θ-semistable points of $\operatorname{rep}_{A}(\mathbf{d})$ are

$$
\operatorname{rep}_{A}(\mathbf{d})_{\theta}^{S S}=\left\{M \in \operatorname{rep}_{A}(\mathbf{d}) \mid \forall N \leq M, \theta \cdot \underline{\operatorname{dim}} N \leq 0\right\} .
$$

We have a quotient map $\operatorname{rep}_{A}(\mathbf{d})_{\theta}^{s_{S}} \rightarrow \mathcal{M}(\mathbf{d})_{\theta}^{S S}$ by GIT.

Semi-stable representations

Choose a weight $\theta \in \mathbb{Z} Q_{0}$ with $\theta \cdot \mathbf{d}=0$. By [King '94], the θ-semistable points of $\operatorname{rep}_{A}(\mathbf{d})$ are

$$
\operatorname{rep}_{A}(\mathbf{d})_{\theta}^{s s}=\left\{M \in \operatorname{rep}_{A}(\mathbf{d}) \mid \forall N \leq M, \theta \cdot \underline{\operatorname{dim}} N \leq 0\right\} .
$$

We have a quotient map $\operatorname{rep}_{A}(\mathbf{d})_{\theta}^{S S} \rightarrow \mathcal{M}(\mathbf{d})_{\theta}^{\text {ss }}$ by GIT.
Let C be an irreducible component of $\operatorname{rep}_{A}(\mathbf{d})$ with $C_{\theta}^{s s} \neq \emptyset$.
Consider a collection $\left\{C_{i} \subseteq \operatorname{rep}_{A}\left(\mathbf{d}_{i}\right)\right\}_{i=1}^{k}$ of irreducible components, each with a nonempty subset of θ-stable points, $C_{i} \neq C_{j}$ for $i \neq j$, and also consider some multiplicities $m_{i} \in \mathbb{Z}_{>0}$, for $i=1, \ldots, k$. We say that $\left\{\left(C_{i}, m_{i}\right)\right\}_{i=1}^{k}$ is a θ-stable decomposition of C if, for a general representation $M \in C_{\theta}^{s s}$, its corresponding stable factors are in C_{i} with multiplicity m_{i}, and write

$$
C=m_{1} C_{1}+\ldots+m_{k} C_{k} .
$$

Application to decompositions of moduli spaces

Normality of irreducible components is important also for studying moduli spaces of semi-stable representations.

Theorem (Chindris, Kinser '18)

Let $C \subseteq \operatorname{rep}_{A}(\mathbf{d})_{\theta}^{s s}$ be an irreducible component with $C_{\theta}^{s s} \neq \emptyset$.
There exists $C=m_{1} C_{1}+\ldots+m_{k} C_{k}$ a θ-stable decomposition of C where $C_{i} \subseteq \operatorname{rep}_{A}\left(\mathbf{d}_{i}\right), 1 \leq i \leq k$, are pairwise distinct θ-stable irreducible components. Moreover, if $\mathcal{M}(C)_{\theta}^{s s}$ is an irreducible component of $\mathcal{M}(\mathbf{d})_{\theta}^{s s}$, then there is a natural morphism

$$
\psi: S^{m_{1}}\left(\mathcal{M}\left(C_{1}\right)_{\theta}^{s s}\right) \times \ldots \times S^{m_{r}}\left(\mathcal{M}\left(C_{k}\right)_{\theta}^{s s}\right) \rightarrow \mathcal{M}(C)_{\theta}^{s s}
$$

which is finite, and birational. In particular, if C is normal then ψ is an isomorphism.

