# Upper and Lower Degree Bounds for Generating Invariants 

Harm Derksen (University of Michigan) joint work with Visu Makam (IAS)

Geometric Methods in Representation Theory November 17, 2018

## Invariant Theory

$K=\mathbb{C}$ base field
$G$ reductive algebraic group (e.g., $G L_{n}$, semi-simple, finite,... )
$V$ n-dimensional representation of $G$
$\mathbb{C}[V]$ ring of polynomial functions on $V$

## Invariant Theory

$K=\mathbb{C}$ base field
$G$ reductive algebraic group (e.g., $G L_{n}$, semi-simple, finite,... )
$V$ n-dimensional representation of $G$
$\mathbb{C}[V]$ ring of polynomial functions on $V$
$G$ acts on $\mathbb{C}[V]$

## Definition

$\mathbb{C}[V]^{G}=\{f \in \mathbb{C}[V] \mid \forall g \in G g \cdot f=f\}$ invariant ring

## Invariant Theory

$K=\mathbb{C}$ base field
$G$ reductive algebraic group (e.g., $\mathrm{GL}_{n}$, semi-simple, finite,... )
$V$ n-dimensional representation of $G$
$\mathbb{C}[V]$ ring of polynomial functions on $V$
$G$ acts on $\mathbb{C}[V]$

## Definition

$\mathbb{C}[V]^{G}=\{f \in \mathbb{C}[V] \mid \forall g \in G g \cdot f=f\}$ invariant ring
Theorem (Hilbert 1890)
$\mathbb{C}[V]^{G}$ is a finitely generated $\mathbb{C}$-algebra

## Degree Bounds

## Definition <br> $\beta_{G}(V)=\min \left\{d \mid \mathbb{C}[V]^{G}\right.$ generated by invariants of degree $\left.\leq d\right\}$

## Degree Bounds

## Definition <br> $\beta_{G}(V)=\min \left\{d \mid \mathbb{C}[V]^{G}\right.$ generated by invariants of degree $\left.\leq d\right\}$

 When do we have "polynomial" bounds for $\beta_{G}(V)$ ?
## Degree Bounds

## Definition

$\beta_{G}(V)=\min \left\{d \mid \mathbb{C}[V]^{G}\right.$ generated by invariants of degree $\left.\leq d\right\}$
When do we have "polynomial" bounds for $\beta_{G}(V)$ ?
Example: $\mathrm{SL}_{2}$ acts on $V_{d}=\left\{a_{0} X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}\right\}$ (binary forms of degree $d$ )

$$
\begin{aligned}
& K\left[V_{d}\right]=K\left[a_{0}, a_{1}, \ldots, a_{d}\right] \\
& K\left[V_{2}\right]^{S L_{2}}=K\left[a_{1}^{2}-4 a_{0} a_{2}\right]
\end{aligned}
$$

## Degree Bounds

## Definition

$\beta_{G}(V)=\min \left\{d \mid \mathbb{C}[V]^{G}\right.$ generated by invariants of degree $\left.\leq d\right\}$ When do we have "polynomial" bounds for $\beta_{G}(V)$ ?

Example: $\mathrm{SL}_{2}$ acts on $V_{d}=\left\{a_{0} X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}\right\}$ (binary forms of degree $d$ )

$$
\begin{aligned}
& K\left[V_{d}\right]=K\left[a_{0}, a_{1}, \ldots, a_{d}\right] \\
& K\left[V_{2}\right]^{S L_{2}}=K\left[a_{1}^{2}-4 a_{0} a_{2}\right]
\end{aligned}
$$

Theorem (C. Jordan 1876)

$$
\beta_{\mathrm{SL}_{2}}\left(V_{d}\right) \leq d^{6}
$$

## Degree Bounds

## Definition

$\beta_{G}(V)=\min \left\{d \mid \mathbb{C}[V]^{G}\right.$ generated by invariants of degree $\left.\leq d\right\}$ When do we have "polynomial" bounds for $\beta_{G}(V)$ ?

Example: $\mathrm{SL}_{2}$ acts on $V_{d}=\left\{a_{0} X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}\right\}$
(binary forms of degree $d$ )

$$
\begin{aligned}
& K\left[V_{d}\right]=K\left[a_{0}, a_{1}, \ldots, a_{d}\right] \\
& K\left[V_{2}\right]^{S L_{2}}=K\left[a_{1}^{2}-4 a_{0} a_{2}\right]
\end{aligned}
$$

Theorem (C. Jordan 1876)

$$
\beta_{\mathrm{SL}_{2}}\left(V_{d}\right) \leq d^{6}
$$

Example: $G$ finite, $V$ representation of $G$

## Theorem (E. Noether 1916)

$$
\left.\beta_{G}(V) \leq|G| \text { (constant bound if } G \text { fixed }\right)
$$

## Polynomial Bound for Tori

Example: $T=\left(\mathbb{C}^{\times}\right)^{m} m$-dimensional torus
for $t=\left(t_{1}, \ldots, t_{m}\right) \in T, a \in \mathbb{Z}^{m}$ we write $t^{a}=t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}$

## Polynomial Bound for Tori

Example: $T=\left(\mathbb{C}^{\times}\right)^{m} m$-dimensional torus
for $t=\left(t_{1}, \ldots, t_{m}\right) \in T, a \in \mathbb{Z}^{m}$ we write $t^{a}=t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}$
$V=K^{n}$ representations with weights $\omega_{1}, \ldots, \omega_{n} \in \mathbb{Z}^{m}$
$t \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)$

## Polynomial Bound for Tori

Example: $T=\left(\mathbb{C}^{\times}\right)^{m} m$-dimensional torus for $t=\left(t_{1}, \ldots, t_{m}\right) \in T, a \in \mathbb{Z}^{m}$ we write $t^{a}=t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}$ $V=K^{n}$ representations with weights $\omega_{1}, \ldots, \omega_{n} \in \mathbb{Z}^{m}$
$t \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)$
Theorem (D. Wehlau 1993)
$\beta_{T}(V) \leq n m!\operatorname{vol}(\mathcal{C})$, where $\mathcal{C}$ is the convex hull of $\omega_{1}, \ldots, \omega_{n}$

## Polynomial Bound for Tori

Example: $T=\left(\mathbb{C}^{\times}\right)^{m} m$-dimensional torus for $t=\left(t_{1}, \ldots, t_{m}\right) \in T, a \in \mathbb{Z}^{m}$ we write $t^{a}=t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}$ $V=K^{n}$ representations with weights $\omega_{1}, \ldots, \omega_{n} \in \mathbb{Z}^{m}$
$t \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)$

## Theorem (D. Wehlau 1993)

$\beta_{T}(V) \leq n m!\operatorname{vol}(\mathcal{C})$, where $\mathcal{C}$ is the convex hull of $\omega_{1}, \ldots, \omega_{n}$
if $T$ (and $m$ ) are fixed, then

$$
\beta_{T}(V)=O\left(n L^{m}\right)
$$

where $L=\max \left\{\left\|\omega_{1}\right\|, \ldots,\left\|\omega_{n}\right\|\right\}$

## Polynomial Bounds for Fixed $G$

$V$ n-dim representation of $G$
$\mathcal{N}=\left\{v \in V \mid \forall f \in \mathbb{C}[V]^{G} f(v)=f(0)\right\}$ null cone

## Definition

$$
\sigma_{G}(V)=\min \{d \mid \mathcal{N} \text { defined by invariants of degree } \leq d\}
$$

## Polynomial Bounds for Fixed $G$

$V$ n-dim representation of $G$
$\mathcal{N}=\left\{v \in V \mid \forall f \in \mathbb{C}[V]^{G} f(v)=f(0)\right\}$ null cone

## Definition

$$
\sigma_{G}(V)=\min \{d \mid \mathcal{N} \text { defined by invariants of degree } \leq d\}
$$

Theorem (D. 2001)

$$
\beta_{G}(V) \leq \max \left\{2, \frac{3}{8} n \sigma_{G}(V)^{2}\right\}
$$

## Polynomial Bounds for Fixed $G$

$T \subseteq G^{0}$ max torus of rank $r, \omega_{1}, \ldots, \omega_{n}$ weights of $T$ acting on $V$ $L=\max \left\{\left\|\omega_{1}\right\|, \ldots,\left\|\omega_{n}\right\|\right\}$

Theorem (Kazarnovskii, Popov, Hiss)

$$
\sigma_{G}(V)=O\left(L^{m}\right), \text { where } m=\operatorname{dim} G
$$

## Polynomial Bounds for Fixed $G$

$T \subseteq G^{0}$ max torus of rank $r, \omega_{1}, \ldots, \omega_{n}$ weights of $T$ acting on $V$ $L=\max \left\{\left\|\omega_{1}\right\|, \ldots,\left\|\omega_{n}\right\|\right\}$

Theorem (Kazarnovskii, Popov, Hiss)

$$
\sigma_{G}(V)=O\left(L^{m}\right), \text { where } m=\operatorname{dim} G
$$

Corollary

$$
\beta_{G}(V)=O\left(n L^{2 m}\right)
$$

## Non-Constant Symmetric Group

$G=S_{n}$ acts on $V_{n}=\mathbb{C}^{n}$ by permutations
$\mathbb{C}\left[V_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, \ldots, e_{n}\right]$, where

$$
e_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

is $k$-th elementary symmetric function, so $\beta_{S_{n}}\left(V_{n}\right)=n$

## Non-Constant Symmetric Group

$G=S_{n}$ acts on $V_{n}=\mathbb{C}^{n}$ by permutations
$\mathbb{C}\left[V_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, \ldots, e_{n}\right]$, where

$$
e_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

is $k$-th elementary symmetric function, so $\beta_{S_{n}}\left(V_{n}\right)=n$

## Theorem (Göbel 1995)

if $G \subseteq S_{n}$, then $\beta_{G}\left(V_{n}\right) \leq \max \left\{n,\binom{n}{2}\right\}$

## Non-Constant Symmetric Group

$G=S_{n}$ acts on $V_{n}=\mathbb{C}^{n}$ by permutations
$\mathbb{C}\left[V_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, \ldots, e_{n}\right]$, where

$$
e_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

is $k$-th elementary symmetric function, so $\beta_{S_{n}}\left(V_{n}\right)=n$

## Theorem (Göbel 1995)

if $G \subseteq S_{n}$, then $\beta_{G}\left(V_{n}\right) \leq \max \left\{n,\binom{n}{2}\right\}$
For example, for fixed $d$ and $S_{n} \subseteq S_{n^{d}}$ we get

$$
\beta_{S_{n}}(\underbrace{V_{n} \otimes \cdots \otimes V_{n}}_{d})=\beta_{S_{n}}\left(V_{n^{d}}\right)=O\left(n^{2 d}\right)
$$

(for $d=2$ one gets graph invariants)

## Matrix Invariants

$\mathrm{GL}_{n}$ acts on Mat ${ }_{n, n}$ by conjugation
Theorem (Procesi 1976, Razmyslov 1974)
$\mathbb{C}\left[\mathrm{Mat}_{n, n}^{s}\right]^{\mathrm{GL}} \mathrm{L}_{n}$ generated by invariants of the form
$\left(A_{1}, \ldots, A_{s}\right) \mapsto \operatorname{Tr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{r}}\right)$
with $r \leq n^{2}$, so $\beta_{\mathrm{GL}_{n}}\left(\mathrm{Mat}_{n, n}^{s}\right) \leq n^{2}$

## Matrix Invariants

$\mathrm{GL}_{n}$ acts on Mat ${ }_{n, n}$ by conjugation

## Theorem (Procesi 1976, Razmyslov 1974)

$\mathbb{C}\left[\mathrm{Mat}_{n, n}^{s}\right]^{\mathrm{GL}}$ generated by invariants of the form

$$
\left(A_{1}, \ldots, A_{s}\right) \mapsto \operatorname{Tr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{r}}\right)
$$

with $r \leq n^{2}$, so $\beta_{\mathrm{GL}}^{n}\left(\mathrm{Mat}_{n, n}^{s}\right) \leq n^{2}$
$\mathrm{SL}_{n} \times \mathrm{SL}_{n}$ acts on Mat ${ }_{n, n}$ by left-right multiplication
Theorem (D.-Makam 2015)
$\mathbb{C}\left[\mathrm{Mat}_{n, n}^{s}\right]^{S \mathrm{~L}_{n}}$ is generated by invariants of the form

$$
\left(A_{1}, \ldots, A_{s}\right) \mapsto \operatorname{det}\left(A_{1} \otimes T_{1}+\cdots+A_{s} \otimes T_{s}\right)
$$

with $T_{1}, \ldots, T_{s} \in$ Mat $_{d, d}$ and $d<n^{5}$ and

$$
\beta_{\mathrm{SL}_{n} \times \mathrm{SL}_{n}}\left(\mathrm{Mat}_{n, n}^{m}\right)<n^{6}
$$

## Non-Constant Torus Action

suppose that $T_{n}=\left(\mathbb{C}^{\times}\right)^{n}$ acts on $W_{n}=\mathbb{C}^{n+1}$ with weights

$$
\begin{gathered}
(-2,0, \ldots, 0) \\
(1,-2,0, \ldots, 0) \\
(0,1,-2, \ldots, 0) \\
(0, \ldots, 0,1,-2) \\
(0, \ldots, 0,0,1)
\end{gathered}
$$

## Non-Constant Torus Action

suppose that $T_{n}=\left(\mathbb{C}^{\times}\right)^{n}$ acts on $W_{n}=\mathbb{C}^{n+1}$ with weights

$$
\begin{gathered}
(-2,0, \ldots, 0) \\
(1,-2,0, \ldots, 0) \\
(0,1,-2, \ldots, 0) \\
(0, \ldots, 0,1,-2) \\
(0, \ldots, 0,0,1)
\end{gathered}
$$

we have

$$
\mathbb{C}\left[W_{n}\right]^{T_{n}}=\mathbb{C}\left[x_{1} x_{2}^{2} x_{3}^{4} \cdots x_{n+1}^{2^{n}}\right]
$$

and $\beta_{T_{n}}\left(W_{n}\right)=2^{n+1}-1$
Exponential Growth!!

## Exponential Lower Bounds for Cubic Forms

Suppose that $G_{n}=S L_{3 n}$ acts on $V_{n}=S^{3}\left(\mathbb{C}^{3 n}\right)$ be the space of cubic forms

## Theorem (D.-Makam)

$\beta_{G_{n}}\left(V_{n}^{4}\right) \geq \frac{2}{3}\left(4^{n}-1\right)$

## Exponential Lower Bounds for Cubic Forms

Suppose that $G_{n}=S L_{3 n}$ acts on $V_{n}=S^{3}\left(\mathbb{C}^{3 n}\right)$ be the space of cubic forms

Theorem (D.-Makam)
$\beta_{G_{n}}\left(V_{n}^{4}\right) \geq \frac{2}{3}\left(4^{n}-1\right)$
we use the Grosshans principle to reduce the theorem to finding exponential lower bounds for the maximal torus $T_{n} \subseteq G_{n}$
we sketch the proof

## Grosshans Principle

$V$ a representation of $G, H \subseteq G$ subgroup
$H$ acts by right multiplication on $G: h \cdot g=g h^{-1}$
$G$ acts on the left on $G$ and on $V$

## Grosshans Principle

$V$ a representation of $G, H \subseteq G$ subgroup
$H$ acts by right multiplication on $G: h \cdot g=g h^{-1}$
$G$ acts on the left on $G$ and on $V$

## Theorem (Grosshans)

there is an isomorphism between $\mathbb{C}[V]^{H}$ and $\left(\mathbb{C}[G]^{H} \otimes \mathbb{C}[V]\right)^{G}$

## Grosshans Principle

$V$ a representation of $G, H \subseteq G$ subgroup
$H$ acts by right multiplication on $G: h \cdot g=g h^{-1}$
$G$ acts on the left on $G$ and on $V$

## Theorem (Grosshans)

there is an isomorphism between $\mathbb{C}[V]^{H}$ and $\left(\mathbb{C}[G]^{H} \otimes \mathbb{C}[V]\right)^{G}$

## Corollary

if $W$ is a representation of $V, w \in W$ has a closed orbit and stabilizer $H$ then $\beta_{G}(V \oplus W) \geq \beta_{H}(V)$

## Grosshans Principle

$V$ a representation of $G, H \subseteq G$ subgroup
$H$ acts by right multiplication on $G: h \cdot g=g h^{-1}$
$G$ acts on the left on $G$ and on $V$

## Theorem (Grosshans)

there is an isomorphism between $\mathbb{C}[V]^{H}$ and $\left(\mathbb{C}[G]^{H} \otimes \mathbb{C}[V]\right)^{G}$

## Corollary

if $W$ is a representation of $V, w \in W$ has a closed orbit and stabilizer $H$ then $\beta_{G}(V \oplus W) \geq \beta_{H}(V)$ proof: $\mathbb{C}[W] \rightarrow \mathbb{C}[\overline{G w}]=\mathbb{C}[G w] \cong \mathbb{C}[G]^{H}$

## Grosshans Principle

$V$ a representation of $G, H \subseteq G$ subgroup
$H$ acts by right multiplication on $G: h \cdot g=g h^{-1}$
$G$ acts on the left on $G$ and on $V$

## Theorem (Grosshans)

there is an isomorphism between $\mathbb{C}[V]^{H}$ and $\left(\mathbb{C}[G]^{H} \otimes \mathbb{C}[V]\right)^{G}$

## Corollary

if $W$ is a representation of $V, w \in W$ has a closed orbit and stabilizer $H$ then $\beta_{G}(V \oplus W) \geq \beta_{H}(V)$ proof: $\mathbb{C}[W] \rightarrow \mathbb{C}[\overline{G w}]=\mathbb{C}[G w] \cong \mathbb{C}[G]^{H}$ $\mathbb{C}[W \oplus V] \rightarrow \mathbb{C}[G]^{H} \otimes \mathbb{C}[V]$ (G-equivariant)

## Grosshans Principle

$V$ a representation of $G, H \subseteq G$ subgroup
$H$ acts by right multiplication on $G: h \cdot g=g h^{-1}$
$G$ acts on the left on $G$ and on $V$

## Theorem (Grosshans)

there is an isomorphism between $\mathbb{C}[V]^{H}$ and $\left(\mathbb{C}[G]^{H} \otimes \mathbb{C}[V]\right)^{G}$

## Corollary

if $W$ is a representation of $V, w \in W$ has a closed orbit and stabilizer $H$ then $\beta_{G}(V \oplus W) \geq \beta_{H}(V)$
proof: $\mathbb{C}[W] \rightarrow \mathbb{C}[\overline{G w}]=\mathbb{C}[G w] \cong \mathbb{C}[G]^{H}$
$\mathbb{C}[W \oplus V] \rightarrow \mathbb{C}[G]^{H} \otimes \mathbb{C}[V]$ (G-equivariant)
$\mathbb{C}[W \oplus V]^{G} \rightarrow\left(\mathbb{C}[G]^{H} \otimes \mathbb{C}[V]\right)^{G}=\mathbb{C}[V]^{H}$

## Kempf-Ness

let $w=\left(\sum_{i=1}^{n} x_{i}^{2} z_{i}, \sum_{i=1}^{n} y_{i}^{2} z_{i}, \sum_{i=1}^{n} \alpha_{i} x_{i} y_{i} z_{i}\right) \in W$, where $W:=V_{n}^{3}=S^{3}\left(\mathbb{C}^{3 n}\right)^{3}$

## Kempf-Ness

let $w=\left(\sum_{i=1}^{n} x_{i}^{2} z_{i}, \sum_{i=1}^{n} y_{i}^{2} z_{i}, \sum_{i=1}^{n} \alpha_{i} x_{i} y_{i} z_{i}\right) \in W$, where $W:=V_{n}^{3}=S^{3}\left(\mathbb{C}^{3 n}\right)^{3}$
the stabilizer of $w$ in $G_{n}=S L_{3 n}$ is a torus $H_{n} \subseteq G_{n}$ (of dim. $n$ ) $t=\left(t_{1}, \ldots, t_{n}\right) \in H_{n}$ acts by $t \cdot x_{i}=t_{i} x_{i}, t \cdot y_{i}=t_{i} y_{i}, t \cdot z_{i}=t^{-2} z_{i}$

## Kempf-Ness

let $w=\left(\sum_{i=1}^{n} x_{i}^{2} z_{i}, \sum_{i=1}^{n} y_{i}^{2} z_{i}, \sum_{i=1}^{n} \alpha_{i} x_{i} y_{i} z_{i}\right) \in W$, where $W:=V_{n}^{3}=S^{3}\left(\mathbb{C}^{3 n}\right)^{3}$
the stabilizer of $w$ in $G_{n}=S L_{3 n}$ is a torus $H_{n} \subseteq G_{n}$ (of dim. $n$ ) $t=\left(t_{1}, \ldots, t_{n}\right) \in H_{n}$ acts by $t \cdot x_{i}=t_{i} x_{i}, t \cdot y_{i}=t_{i} y_{i}, t \cdot z_{i}=t^{-2} z_{i}$
by studying the moment map we see that $w$ is a critical point for the function $v \mapsto\|v\|^{2}$ on the orbit $\mathrm{SU}_{3 n} \cdot w$

## Kempf-Ness

let $w=\left(\sum_{i=1}^{n} x_{i}^{2} z_{i}, \sum_{i=1}^{n} y_{i}^{2} z_{i}, \sum_{i=1}^{n} \alpha_{i} x_{i} y_{i} z_{i}\right) \in W$, where $W:=V_{n}^{3}=S^{3}\left(\mathbb{C}^{3 n}\right)^{3}$
the stabilizer of $w$ in $G_{n}=S L_{3 n}$ is a torus $H_{n} \subseteq G_{n}$ (of dim. $n$ ) $t=\left(t_{1}, \ldots, t_{n}\right) \in H_{n}$ acts by $t \cdot x_{i}=t_{i} x_{i}, t \cdot y_{i}=t_{i} y_{i}, t \cdot z_{i}=t^{-2} z_{i}$
by studying the moment map we see that $w$ is a critical point for the function $v \mapsto\|v\|^{2}$ on the orbit $\mathrm{SU}_{3 n} \cdot w$
from Kempf-Ness theory follows that the orbit $G_{n}$ is closed

## Kempf-Ness

let $w=\left(\sum_{i=1}^{n} x_{i}^{2} z_{i}, \sum_{i=1}^{n} y_{i}^{2} z_{i}, \sum_{i=1}^{n} \alpha_{i} x_{i} y_{i} z_{i}\right) \in W$, where $W:=V_{n}^{3}=S^{3}\left(\mathbb{C}^{3 n}\right)^{3}$
the stabilizer of $w$ in $G_{n}=S L_{3 n}$ is a torus $H_{n} \subseteq G_{n}$ (of dim. $n$ ) $t=\left(t_{1}, \ldots, t_{n}\right) \in H_{n}$ acts by $t \cdot x_{i}=t_{i} x_{i}, t \cdot y_{i}=t_{i} y_{i}, t \cdot z_{i}=t^{-2} z_{i}$
by studying the moment map we see that $w$ is a critical point for the function $v \mapsto\|v\|^{2}$ on the orbit $\mathrm{SU}_{3 n} \cdot w$
from Kempf-Ness theory follows that the orbit $G_{n}$ is closed from the Corollary we get

$$
\beta_{G_{n}}\left(V_{n}^{4}\right)=\beta_{G_{n}}\left(W \oplus V_{n}\right) \geq \beta_{H_{n}}\left(V_{n}\right) \geq \frac{2}{3}\left(4^{n}-1\right)
$$

