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Invariant Theory

K = C base field
G reductive algebraic group (e.g., GLn, semi-simple, finite,. . . )
V n-dimensional representation of G
C[V ] ring of polynomial functions on V

G acts on C[V ]

Definition

C[V ]G = {f ∈ C[V ] | ∀g ∈ G g · f = f } invariant ring

Theorem (Hilbert 1890)

C[V ]G is a finitely generated C-algebra
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Degree Bounds

Definition

βG (V ) = min{d | C[V ]G generated by invariants of degree ≤ d}

When do we have “polynomial” bounds for βG (V )?

Example: SL2 acts on Vd = {a0X d + a1X
d−1Y + · · ·+ adY

d}
(binary forms of degree d)
K [Vd ] = K [a0, a1, . . . , ad ]
K [V2]SL2 = K [a21 − 4a0a2]

Theorem (C. Jordan 1876)

βSL2(Vd) ≤ d6

Example: G finite, V representation of G

Theorem (E. Noether 1916)

βG (V ) ≤ |G | (constant bound if G fixed)
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Polynomial Bound for Tori

Example: T = (C×)m m-dimensional torus
for t = (t1, . . . , tm) ∈ T , a ∈ Zm we write ta = ta11 · · · tamm

V = Kn representations with weights ω1, . . . , ωn ∈ Zm

t · (x1, x2, . . . , xn) = (tω1x1, . . . , t
ωnxn)

Theorem (D. Wehlau 1993)

βT (V ) ≤ nm! vol(C), where C is the convex hull of ω1, . . . , ωn

if T (and m) are fixed, then
βT (V ) = O(nLm)

where L = max{‖ω1‖, . . . , ‖ωn‖}
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Polynomial Bounds for Fixed G

V n-dim representation of G
N = {v ∈ V | ∀f ∈ C[V ]G f (v) = f (0)} null cone

Definition

σG (V ) = min{d | N defined by invariants of degree ≤ d}

Theorem (D. 2001)

βG (V ) ≤ max{2, 38nσG (V )2}
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Polynomial Bounds for Fixed G

T ⊆ G 0 max torus of rank r , ω1, . . . , ωn weights of T acting on V
L = max{‖ω1‖, . . . , ‖ωn‖}

Theorem (Kazarnovskii, Popov, Hiss)

σG (V ) = O(Lm), where m = dimG

Corollary

βG (V ) = O(nL2m)
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Non-Constant Symmetric Group

G = Sn acts on Vn = Cn by permutations
C[Vn]Sn = C[e1, . . . , en], where

ek =
∑

i1<i2<···<ik

xi1xi2 · · · xik

is k-th elementary symmetric function, so βSn(Vn) = n

Theorem (Göbel 1995)

if G ⊆ Sn, then βG (Vn) ≤ max{n,
(n
2

)
}

For example, for fixed d and Sn ⊆ Snd we get

βSn(Vn ⊗ · · · ⊗ Vn︸ ︷︷ ︸
d

) = βSn(Vnd ) = O(n2d)

(for d = 2 one gets graph invariants)
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Matrix Invariants

GLn acts on Matn,n by conjugation

Theorem (Procesi 1976, Razmyslov 1974)

C[Matsn,n]GLn generated by invariants of the form
(A1, . . . ,As) 7→ Tr(Ai1Ai2 · · ·Air )

with r ≤ n2, so βGLn(Matsn,n) ≤ n2

SLn×SLn acts on Matn,n by left-right multiplication

Theorem (D.-Makam 2015)

C[Matsn,n]SLn is generated by invariants of the form
(A1, . . . ,As) 7→ det(A1 ⊗ T1 + · · ·+ As ⊗ Ts)

with T1, . . . ,Ts ∈ Matd ,d and d < n5 and
βSLn ×SLn(Matmn,n) < n6
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Non-Constant Torus Action

suppose that Tn = (C×)n acts on Wn = Cn+1 with weights

(−2, 0, . . . , 0)
(1,−2, 0, . . . , 0)
(0, 1,−2, . . . , 0)
(0, . . . , 0, 1,−2)
(0, . . . , 0, 0, 1)

we have
C[Wn]Tn = C[x1x

2
2x

4
3 · · · x2

n

n+1]

and βTn(Wn) = 2n+1 − 1

Exponential Growth!!
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Exponential Lower Bounds for Cubic Forms

Suppose that Gn = SL3n acts on Vn = S3(C3n) be the space of
cubic forms

Theorem (D.-Makam)

βGn(V 4
n ) ≥ 2

3(4n − 1)

we use the Grosshans principle to reduce the theorem to finding
exponential lower bounds for the maximal torus Tn ⊆ Gn

we sketch the proof
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Grosshans Principle

V a representation of G , H ⊆ G subgroup
H acts by right multiplication on G : h · g = gh−1

G acts on the left on G and on V

Theorem (Grosshans)

there is an isomorphism between C[V ]H and (C[G ]H ⊗ C[V ])G

Corollary

if W is a representation of V , w ∈W has a closed orbit and
stabilizer H then βG (V ⊕W ) ≥ βH(V )

proof: C[W ] � C[Gw ] = C[Gw ] ∼= C[G ]H

C[W ⊕ V ] � C[G ]H ⊗ C[V ] (G -equivariant)
C[W ⊕ V ]G � (C[G ]H ⊗ C[V ])G = C[V ]H

Harm Derksen Upper and Lower Degree Bounds for Generating Invariants



Grosshans Principle

V a representation of G , H ⊆ G subgroup
H acts by right multiplication on G : h · g = gh−1

G acts on the left on G and on V

Theorem (Grosshans)

there is an isomorphism between C[V ]H and (C[G ]H ⊗ C[V ])G

Corollary

if W is a representation of V , w ∈W has a closed orbit and
stabilizer H then βG (V ⊕W ) ≥ βH(V )

proof: C[W ] � C[Gw ] = C[Gw ] ∼= C[G ]H

C[W ⊕ V ] � C[G ]H ⊗ C[V ] (G -equivariant)
C[W ⊕ V ]G � (C[G ]H ⊗ C[V ])G = C[V ]H

Harm Derksen Upper and Lower Degree Bounds for Generating Invariants



Grosshans Principle

V a representation of G , H ⊆ G subgroup
H acts by right multiplication on G : h · g = gh−1

G acts on the left on G and on V

Theorem (Grosshans)

there is an isomorphism between C[V ]H and (C[G ]H ⊗ C[V ])G

Corollary

if W is a representation of V , w ∈W has a closed orbit and
stabilizer H then βG (V ⊕W ) ≥ βH(V )

proof: C[W ] � C[Gw ] = C[Gw ] ∼= C[G ]H

C[W ⊕ V ] � C[G ]H ⊗ C[V ] (G -equivariant)
C[W ⊕ V ]G � (C[G ]H ⊗ C[V ])G = C[V ]H

Harm Derksen Upper and Lower Degree Bounds for Generating Invariants



Grosshans Principle

V a representation of G , H ⊆ G subgroup
H acts by right multiplication on G : h · g = gh−1

G acts on the left on G and on V

Theorem (Grosshans)

there is an isomorphism between C[V ]H and (C[G ]H ⊗ C[V ])G

Corollary

if W is a representation of V , w ∈W has a closed orbit and
stabilizer H then βG (V ⊕W ) ≥ βH(V )

proof: C[W ] � C[Gw ] = C[Gw ] ∼= C[G ]H

C[W ⊕ V ] � C[G ]H ⊗ C[V ] (G -equivariant)
C[W ⊕ V ]G � (C[G ]H ⊗ C[V ])G = C[V ]H

Harm Derksen Upper and Lower Degree Bounds for Generating Invariants



Grosshans Principle

V a representation of G , H ⊆ G subgroup
H acts by right multiplication on G : h · g = gh−1

G acts on the left on G and on V

Theorem (Grosshans)

there is an isomorphism between C[V ]H and (C[G ]H ⊗ C[V ])G

Corollary

if W is a representation of V , w ∈W has a closed orbit and
stabilizer H then βG (V ⊕W ) ≥ βH(V )

proof: C[W ] � C[Gw ] = C[Gw ] ∼= C[G ]H

C[W ⊕ V ] � C[G ]H ⊗ C[V ] (G -equivariant)

C[W ⊕ V ]G � (C[G ]H ⊗ C[V ])G = C[V ]H

Harm Derksen Upper and Lower Degree Bounds for Generating Invariants



Grosshans Principle

V a representation of G , H ⊆ G subgroup
H acts by right multiplication on G : h · g = gh−1

G acts on the left on G and on V

Theorem (Grosshans)

there is an isomorphism between C[V ]H and (C[G ]H ⊗ C[V ])G

Corollary

if W is a representation of V , w ∈W has a closed orbit and
stabilizer H then βG (V ⊕W ) ≥ βH(V )

proof: C[W ] � C[Gw ] = C[Gw ] ∼= C[G ]H

C[W ⊕ V ] � C[G ]H ⊗ C[V ] (G -equivariant)
C[W ⊕ V ]G � (C[G ]H ⊗ C[V ])G = C[V ]H

Harm Derksen Upper and Lower Degree Bounds for Generating Invariants



Kempf-Ness

let w = (
∑n

i=1 x
2
i zi ,

∑n
i=1 y

2
i zi ,

∑n
i=1 αixiyizi ) ∈W , where

W := V 3
n = S3(C3n)3

the stabilizer of w in Gn = SL3n is a torus Hn ⊆ Gn (of dim. n)
t = (t1, . . . , tn) ∈ Hn acts by t · xi = tixi , t · yi = tiyi , t · zi = t−2zi

by studying the moment map we see that w is a critical point for
the function v 7→ ‖v‖2 on the orbit SU3n ·w

from Kempf-Ness theory follows that the orbit Gn is closed

from the Corollary we get

βGn(V 4
n ) = βGn(W ⊕ Vn) ≥ βHn(Vn) ≥ 2

3(4n − 1).
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