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Background and motivation: Horn’s conjecture

In 1912, H. Weyl asked the following question:

Weyl’s eigenvalue problem: Letting λ(i) denote a weakly
decreasing sequence of n real numbers,

λ(i) : λ1(i) ≥ λ2(i) ≥ . . . ≥ λn(i),

describe the triples (λ(1), λ(2), λ(3)) for which there exist n × n
Hermitian matrices H(1), H(2),H(3) with eigenvalues
λ(1), λ(2), λ(3), respectively, such that

H(2) = H(1) + H(3).
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Littlewood-Richardson coefficients

A weakly decreasing sequence λ = (λ1, . . . , λn) is a partition if
λi ∈ Z≥0 for all i . In this case, we say it has at most n nonzero
parts. Over C,

{weakly decreasing sequences of n integers λ = (λ1, . . . , λn)}
l

{irreducible rational representations of GL(V ), denoted SλV}

Definition
Given any three weakly decreasing sequences of n integers
λ, µ, ν, the Littlewood-Richardson coefficient cνλ,µ is defined
to be the multiplicity of SνV in SλV ⊗ SµV , i.e.,

cνλ,µ = dimCHomGL(V )(SνV ,SλV ⊗ SµV ).
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Theorem (Horn’s conjecture (1962))

Let λ(i) = (λ1(i), . . . , λn(i)), i ∈ {1, 2, 3}, be weakly decreasing sequences
of n real numbers. Then the following are equivalent:

1 there exist n × n complex Hermitian matrices H(i) with eigenvalues λ(i)
such that

H(2) = H(1) + H(3);

2 the numbers λj(i) satisfy

|λ(2)| = |λ(1)|+ |λ(3)|

together with ∑
j∈I2

λj(2) ≤
∑
j∈I1

λj(1) +
∑
j∈I3

λj(3)

for every triple (I1, I2, I3) of subsets of {1, . . . , n} of the same cardinality
r < n and cλ(I2)λ(I1),λ(I3)

6= 0;

3 if λj(i) is an integer for each 1 ≤ j ≤ n, i ∈ {1, 2, 3}, (1) and (2) are
equivalent to cλ(2)λ(1),λ(3) 6= 0.
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Horn’s conj. (cont.)

A. Klyachko (1998) proved the equivalence of (1) and (2) and
noted the connection between Horn’s conjecture and
Littlewood-Richardson coefficients.

P. Belkale (2001) showed that all inequalities for which
cλ(I2)λ(I1),λ(I3)

> 1 are redundant.

The remaining inequalities would be irredundant by a theorem
of Klyachko provided the saturation of Littlewood-Richardson
coefficients.
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Horn’s conj. (cont.)

Theorem (Saturation conjecture)
For weakly decreasing sequences of n integers λ, µ, ν,
cNν

Nλ,Nµ 6= 0 for some positive integer N if and only if cνλ,µ 6= 0.

This was first proven by A. Knutson and T. Tao (1999) using
combinatorial gadgets called honeycombs and hive models.

It was proven again in the context of quiver theory by H.
Derksen and J. Weyman (2000).
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Generalized Littlewood-Richardson coefficients

For an m-tuple of weakly decreasing sequences of n integers
λ = (λ(1), . . . , λ(m)), λ(i) = (λ1(i), . . . , λn(i)),

1 f1(λ) :=
∑

cλ(1)α(1),α(2)c
λ(2)
α(2),α(3) · · · c

λ(m−1)
α(m−1),α(m)c

λ(m)
α(m),α(1),

m ≥ 4 and even;

2 f2(λ) :=
∑

cα(1)λ(1),λ(2)c
λ(3)
α(1),α(2) · · · c

λ(m−2)
α(m−4),α(m−3)c

α(m−3)
λ(m−1),λ(m),

m ≥ 4;

3 f3(λ) :=
∑

cλ(2)λ(1),α(1)c
λ(3)
α(1),α(2) · · · c

λ(m−2)
α(m−4),α(m−3)c

λ(m−1)
α(m−3),λ(m),

m ≥ 3.
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Motivation

f1 describes the coefficients arising from the branching rule for
the diagonal embedding GL(n) ⊆ GL(n)× GL(n) in the case
m = 6.

f2 describes the branching rule for the direct sum embedding
GL(n)× GL(n′) ⊆ GL(n + n′) when m = 6.

The multiplicity f3 describes the tensor product multiplicities for
extremal weight crystals of type A+∞ when m = 6. This
generalized multiplicity is described by C. Chindris, and is found
to have connections with long exact sequences of finite, abelian
p-groups, parabolic affine Kazhdan-Lusztig polynomials, and
decomposition numbers for q-Schur algebras.
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Sun quiver

f1(λ) :=
∑
α(i)

cλ(1)α(1),α(2)c
λ(2)
α(2),α(3)c

λ(3)
α(3),α(4)c

λ(4)
α(4),α(5)c

λ(5)
α(5),α(6)c

λ(6)
α(6),α(1)

~~
3

``

2oo

��
// 4

@@

��

1 //

5

~~

6oo

@@

``

β(i , j) = j , 1 ≤ i ≤ 6, 1 ≤ j ≤ n
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Saturation property

Lemma
Let λ(1), . . . , λ(m), m ≥ 4 and even, be weakly decreasing
sequences of n integers. Then for every integer r ≥ 1, we have

f1(rλ(1), . . . , rλ(m)) =
∑
α(i)

crλ(1)
α(1),α(2)c

rλ(2)
α(2),α(3) · · · crλ(m)

α(m),α(1)

= dimSI(Q, β)rσ1
,

where

σ1(j , i) =

{
(−1)i(λ(i)j − λ(i)j+1) 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1
(−1)iλ(i)n 1 ≤ i ≤ m, j = n.
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Saturation property (cont.)

Theorem (C.) (Saturation property)

Let λ(1), . . . , λ(m) be weakly decreasing sequences of n
integers for m ≥ 4 and even. For every integer r ≥ 1,

f1(rλ(1), . . . , rλ(m)) 6= 0⇐⇒ f1(λ(1), . . . , λ(m)) 6= 0.
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Horn-type inequalities

Let β1 ≤ β be a dimension vector which is weakly increasing
with jumps of at most one along each of the flags.

Define the jump sets

Ii = {l | β1(l , i) > β1(l − 1, i), 1 ≤ l ≤ n}

Conversely, each tuple I = (I1, . . . , Im) of subsets of {1, . . . ,n}
defines a dimension vector βI because if

Ii = {z1(i) < · · · < zr (i)},

then βI(j , i) = j − 1 for all zk−1(i) ≤ j < zk (i) for all
1 ≤ k ≤ r + 1.
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Horn-type inequalities (cont.)

For a subset I = {z1 < . . . < zr} ⊆ {1, . . . ,n}, define the
partition

λ(I) = (zr − r , . . . , z1 − 1).

Define

λ1(Ii) =

{
λ′(Ii) i even
λ′(Ii)− ((|Ii | − |Ii−1| − |Ii+1|)n−|Ii |) i odd.

λ1(Ii) is a weakly decreasing sequence of integers for each i .
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Proposition (C.) (Horn-type inequalities)

Let λ(1), . . . , λ(m) be weakly decreasing sequences of n reals, m ≥ 4 and even. The
following are equivalent for the sun quiver Q:

1 dimSI(Q, β)σ 6= 0;
2 the numbers λ(i)j satisfy

∑
i even

|λ(i)| =
∑
i odd

|λ(i)|

and ∑
j∈Ii

∑
i even

λ(i)j ≤
∑
j∈Ii

∑
i odd

λ(i)j

for every tuple (I1, . . . , Im) for which |Ii | < n for some i , the λ1(Ii ) are partitions,
1 ≤ i ≤ m, and

f1(λ1(I1), . . . , λ1(Im)) 6= 0;

In particular, this provides a recursive procedure for finding all nonzero generalized
Littlewood-Richardson coefficients of this type.
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Example
For n = 2 and m = 6 for the sun quiver Q, dimSI(Q, β)σ 6= 0 if and
only if the defining partitions λ(1), . . . , λ(6) satisfy

|λ(1)|+ |λ(3)|+ |λ(5)| = |λ(2)|+ |λ(4)|+ |λ(6)|,

and

λ(2)1 ≤ λ(1)1 + λ(3)1 λ(2)2 ≤ λ(1)1 + λ(3)2

λ(2)1 + λ(4)2 ≤ λ(1)1 + λ(3)1 + λ(5)1 λ(2)2 + λ(4)2 ≤ λ(1)1 + λ(3)2 + λ(5)1

λ(2)2 + λ(6)2 ≤ λ(1)1 + λ(3)2 + λ(5)1 |λ(2)| ≤ |λ(1)| + |λ(3)|

λ(2)1 + λ(4)1 ≤ λ(1)1 + |λ(3)| + λ(5)1 λ(2)1 + λ(4)2 ≤ λ(1)1 + |λ(3)| + λ(5)2

λ(2)2 + λ(4)2 ≤ λ(1)2 + |λ(3)| + λ(5)2 λ(2)1 + λ(4)2 + λ(6)2 ≤ λ(1)1 + |λ(3)| + λ(5)1

λ(2)1 + λ(4)2 + λ(6)2 ≤ λ(1)1 + λ(3)1 + |λ(5)| λ(2)2 + λ(4)2 + λ(6)2 ≤ λ(1)1 + |λ(3)| + λ(5)2

|λ(2)| + λ(4)1 + λ(6)2 ≤ |λ(1)| + |λ(3)| + λ(5)1 |λ(2)| + λ(4)2 + λ(6)2 ≤ |λ(1)| + |λ(3)| + λ(5)2,

along with the inequalities obtained by permutations of the flags
that respect the symmetries of the sun quiver. Moreover, this is
a minimal list.
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Hive models

g00 g01 g02

g10 g11

g20

e00 f00 e01 f01 e02 f02

e10 f10 e11 f11

e20 f20

eij + fij = gij ei j+1 + fij = gi+1 j
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Rhombus inequalities

gi+1j

gij

eij ei+1j

ei+1j fi+1j

fij eij+1

fij

gi+1j

gij+1

fij+1

eij ≥ eij+1, gij ≥ gi+1j fi+1j ≥ fij , eij+1 ≥ ei+1j

fij ≥ fij+1, gi+1j ≥ gij+1
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LR hives (cont.)

Theorem (Knutson, Tao (1999))
The Littlewood-Richardson coefficient cνλ, µ is the number of
integer LR hives with boundary labels determined by λ, µ, and
ν.
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Gluing LR hives

cλ(1)α(1),α(2)c
λ(2)
α(2),α(3)

gk
00 gk

01 gk
02

gk
10 gk

11

gk
20

ek
00 f k

00 ek
01 f k

01 ek
02 f k

02

ek
10 f k

10 ek
11 f k

11

ek
20 f k

20

gk+1
00 gk+1

01 gk+1
02

gk+1
10 gk+1

11

gk+1
20

ek+1
00 f k+1

00 ek+1
01 f k+1

01 ek+1
02 f k+1

02

ek+1
10 f k+1

10 ek+1
11 f k+1

11

ek+1
20 f k+1

20
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Theorem (C.)

For partitions λ(1), . . . , λ(m), m ≥ 4 and even, of no more than n parts, the
generalized Littlewood-Richardson coefficient∑

cλ(1)α(1),α(2)c
λ(2)
α(2),α(3) · · · c

λ(m−1)
α(m−1),α(m)c

λ(m)
α(m),α(1)

is equal to the number of integer (m, n)-LR sun hives with external boundary
labels determined by the λ(i) in cyclic orientation (so that the edge labeled
λ(r) is between the edges labeled λ(r + 1) and λ(r − 1)). For instance, the
boundary labels of a (6, n)−LR sun hive are

λ(2)

λ(1)

λ(6)

λ(5)

λ(4)

λ(3)
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Geometric complexity theory

K. Mulmuley and M. Sohoni introduced geometric complexity
theory for the purpose of approaching fundamental problems in
complexity theory (such as P vs. NP) through algebraic
geometry and representation theory.

A. Knutson and T. Tao (1999) and J. De Loera and T. McAllister
(2006) independently showed that whether cνλ,µ > 0 could be
computed in polynomial time. Mululey and Sohoni (2005)
showed positivity could be computed in strongly polynomial
time.

H. Narayanan (2005) showed the exact computation is a #P
problem.
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Making a linear program

For each 1 ≤ r ≤ m, the rhombus inequalities and boundary
conditions may be written as a linear program Ar xr ≤ br, where

Ar is a matrix with entries 0,1,−1,
xr is the vector of interior edges er

ij , f r
ij , gr

ij ,
the entries of br are homogeneous, linear forms in the
entries of λ(r), and are thus integral when λ(r) is a
partition.

Combining each of these produces a linear program Ax ≤ b.
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Complexity of generalized LR coefficients

Theorem (C.)

For partitions λ(1), . . . , λ(m), m ≥ 4 and even, determining
whether

f1(λ(1), . . . , λ(m)) =
∑

cλ(1)α(1),α(2) · · · c
λ(m−1)
α(m−1),α(m)c

λ(m)
α(m),α(1)

is positive can be decided in strongly polynomial time.
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Sketch of proof

Proving the multiplicity is nonzero is equivalent to showing that the
polytope contains an integer (m,n)-LR sun hive.

If the polytope is nonempty, it has a vertex v, A must be of full rank,
and necessarily Av = b. Because the entries of A and b are integers,
the entries of v are rational.

Scaling the polytope produces an integral vertex. Hence, the scaled
polytope has an integral (m,n)-LR sun hive, which shows the scaled
multiplicity is nonzero.

By the saturation property, this proves the unscaled multiplicity is
nonzero.

Determining whether the polytope is nonempty can be determined in
polynomial time using techniques from linear programming.

Ax ≤ b is combinatorial, so this can in fact be checked in strongly
polynomial time (É. Tardos, 1986).

Brett Collins Generalized Littlewood-Richardson coefficients for branching rules of GL(n) 24 / 25



Generalized LR coefficients A quiver theoretic description Horn-type inequalities A polytopal description

Sketch of proof

Proving the multiplicity is nonzero is equivalent to showing that the
polytope contains an integer (m,n)-LR sun hive.

If the polytope is nonempty, it has a vertex v, A must be of full rank,
and necessarily Av = b. Because the entries of A and b are integers,
the entries of v are rational.

Scaling the polytope produces an integral vertex. Hence, the scaled
polytope has an integral (m,n)-LR sun hive, which shows the scaled
multiplicity is nonzero.

By the saturation property, this proves the unscaled multiplicity is
nonzero.

Determining whether the polytope is nonempty can be determined in
polynomial time using techniques from linear programming.

Ax ≤ b is combinatorial, so this can in fact be checked in strongly
polynomial time (É. Tardos, 1986).
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Thank you!
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