Quantum dilogarithm identities: the geometry of quiver representations viewpoint

Justin Allman
(joint with R. Rimányi)

17 November 2018

Quantum dilogarithm series and pentagon identity

Let $\mathcal{P}_{n}=\prod_{i=1}^{n} \frac{1}{1-q^{i}}$

- generating function for $\pi(N ; n)$
- Hilbert series (in $q^{1 / 2}$) of algebra: $\mathbb{R}\left[c_{1}, \ldots, c_{n}\right], \operatorname{deg}\left(c_{i}\right)=2 i$.
- Poincaré series for $\mathrm{H}^{*}(B \mathrm{GL}(n, \mathbb{C}))$

Definition 1

For a variable z, the quantum dilogarithm series in $\mathbb{Q}\left(q^{1 / 2}\right)[[z]]$ is

$$
\mathbb{E}(z)=1+\sum_{n \geqslant 1} \frac{(-z)^{n} q^{n^{2} / 2}}{\prod_{i=1}^{n}\left(1-q^{\prime}\right)}=1+\sum_{n \geqslant 1}(-z)^{n} q^{n^{2} / 2} \mathcal{P}_{n} .
$$

Theorem (E)-Pentagon Identity)

In the algebra $\mathbb{Q}\left(q^{1 / 2}\right)\left\langle\left\langle y_{1}, y_{2}\right\rangle\right\rangle /\left(y_{1} y_{2}-q y_{2} y_{1}\right)$ we have

$$
\mathbb{E}\left(y_{1}\right) \mathbb{E}\left(y_{2}\right)=\mathbb{E}\left(y_{2}\right) \mathbb{E}\left(-q^{-1 / 2} y_{2} y_{1}\right) \mathbb{E}\left(y_{1}\right) .
$$

$$
\mathbb{E}\left(y_{1}\right) \mathbb{E}\left(y_{2}\right)=\mathbb{E}\left(y_{2}\right) \mathbb{E}\left(-q^{-1 / 2} y_{2} y_{1}\right) \mathbb{E}\left(y_{1}\right)
$$

Pentagon identity has several interpretations, depending on your tastes.

- Comparing coefficients of $y_{1}^{\gamma_{1}} y_{2}^{\gamma_{2}}$ on each side gives identities:

$$
\mathcal{P}_{\gamma_{1}} \mathcal{P}_{\gamma_{2}}=\sum_{\left(m_{10}, m_{01}, m_{11}\right) \vdash\left(\gamma_{1}, \gamma_{2}\right)} q^{m_{10} m_{01}} \mathcal{P}_{m_{10}} \mathcal{P}_{m_{01}} \mathcal{P}_{m_{11}},
$$

- Combinatorics: Implies Durfee's square/rectangle identities
- Analysis (and number theory and physics): quantum version of the five-term identity for the Rogers dilogarithm
- Geometry: related to refined DT-invariant for A_{2} quiver; simplest example of "wall-crossing formula"
- Topology: two ways to count Betti numbers of the $\overline{\mathrm{GL}}\left(\gamma_{1}, \mathbb{C}\right) \times \mathrm{GL}\left(\gamma_{2}, \mathbb{C}\right)$-equivariant cohomology of $V=\operatorname{Hom}\left(\mathbb{C}^{\gamma_{2}}, \mathbb{C}^{\gamma_{1}}\right)$-on LHS use that V is contractible, on RHS cut V into orbits

We adopt topological approach:
invent finite stratifications of a quiver's representation space, and compare Betti numbers via spectral sequence arguments.

- Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with vertex set Q_{0} and arrow set Q_{1}.
- For $a \in Q_{1}$ let ta, ha $\in Q_{0}$ respectively denote its head and tail (target and source) vertex.
- For any dimension vector γ we have the representation space

$$
\operatorname{Rep}_{\gamma}=\bigoplus_{a \in Q_{1}} \operatorname{Hom}\left(\mathbb{C}^{\gamma(t a)}, \mathbb{C}^{\gamma(h a)}\right)
$$

with action of $\mathbf{G}_{\gamma}=\prod_{i \in Q_{0}} \mathrm{GL}\left(\mathbb{C}^{\gamma(i)}\right)$ by base-change at each vertex.

- Let λ denote the form (extend linearly to all dimension vectors)

$$
\lambda\left(e_{i}, e_{j}\right)=\#\{\text { arrows } i \rightarrow j\}-\#\{\text { arrows } j \rightarrow i\} .
$$

Summary of representation theory of Dynkin quivers

Dynkin quivers \Longleftrightarrow orientations of ADE Dynkin diagrams

Root Systems

- simples: $\Delta=\left\{\alpha_{i}: i \in Q_{0}\right\}$
- positives: $\Phi=\left\{\beta_{j}\right\}$
- For each $\beta \in \Phi$ there are unique positive integers d_{α}^{β} such that

$$
\beta=\sum_{\alpha \in \Delta} d_{\alpha}^{\beta} \alpha
$$

Theorem (Gabriel's Theorem)

$$
\text { For any } \gamma:\left\{\begin{array}{c}
\mathbf{G}_{\gamma} \text {-orbits } \\
\text { in } \text { Rep }_{\gamma}
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { Kostant Partitions } \\
\left(m_{\beta}\right)_{\beta \in \Phi} \in \mathbb{N}^{\Phi}: \\
\sum_{\beta \in \Phi} m_{\beta} \beta=\gamma
\end{array}\right\}
$$

Quantum algebra of Q

Let $q^{1 / 2}$ be an indeterminate and q denote its square. The quantum algebra \mathbb{A}_{Q} of the quiver is the $\mathbb{Q}\left(q^{1 / 2}\right)$-algebra

- spanned as vector space by symbols y_{γ}, one for each dimension vector γ
- subject to the relation

$$
y_{\gamma_{1}+\gamma_{2}}=-q^{-\frac{1}{2} \lambda\left(\gamma_{1}, \gamma_{2}\right)} y_{\gamma_{1}} y_{\gamma_{2}} .
$$

- The elements $y_{e_{i}}$ form a set of algebraic generators.
- Let $\hat{\mathbb{A}}_{Q}$ denote the completed quantum algebra (allow power series in y-variables)

Example: A_{2}

Consider the quiver $1 \leftarrow 2$. Set $y_{i}=y_{e_{i}}$. Then

$$
y_{1} y_{2}=q y_{2} y_{1} \quad y_{e_{1}+e_{2}}=-q^{-1 / 2} y_{2} y_{1}
$$

Thus the Pentagon Identity says that

$$
\mathbb{E}\left(y_{1}\right) \mathbb{E}\left(y_{2}\right)=\mathbb{E}\left(y_{2}\right) \mathbb{E}\left(y_{e_{1}+e_{2}}\right) \mathbb{E}\left(y_{1}\right) .
$$

- The left-hand side reflects an ordering of the simple roots of A_{2};
- the right-hand side reflects an ordering for the positive roots of A_{2}.

Reineke's EPI generalization

- For each $i \in Q_{0}, \exists \alpha_{i}$ simple root, identified with dimension vector e_{i}.
- Since each positive root has unique decomposition

$$
\beta=\sum_{i \in Q_{0}} d_{\alpha_{i}}^{\beta} \alpha_{i},
$$

the positive root β is also identified with a dimension vector

Theorem (Reineke (2010), Rimányi (2013))

For Dynkin quivers Q there exist orderings on the simple and positive roots such that

$$
\prod_{\alpha \text { simple }}^{\hat{}} \mathbb{E}\left(y_{\alpha}\right)=\prod_{\beta \text { positive }}^{\hat{}} \mathbb{E}\left(y_{\beta}\right) .
$$

where " \lrcorner " indicates the products are taken in the specified orders.

- Actually, the common value of both sides is denoted \mathbb{E}_{Q} and called the refined DT invariant of the quiver (Keller, 2010).

General acyclic factorizations

Theorem (A. (2018))

For Q acyclic and any admissible Dynkin subquiver partition $\left(Q_{1}, \ldots, Q_{r}\right)$ we have a factorization of the $D T$-invariant

$$
\mathbb{E}_{Q}=\left(\prod_{\sigma \in \Phi\left(Q_{1}\right)}^{\overrightarrow{ }} \mathbb{E}\left(y_{\sigma}\right)\right) \cdots\left(\prod_{\tau \in \Phi\left(Q_{r}\right)}^{\overrightarrow{ }} \mathbb{E}\left(y_{\tau}\right)\right) .
$$

- Suppose Q is Dynkin. When $r=1$ we obtain the "positive root side" of the Reineke identity.
- When $r=\left|Q_{0}\right|$, and hence each $Q_{i}=$ "the singleton vertex i ", we obtain the "simple root side" of the Reineke identity.

General acyclic quivers

- Acyclic quiver with admissible Dynkin subquiver partition (circled in red)
- Admissible means that when each circled subquiver is shrunk to a vertex, the resulting quiver is still acyclic.
- This is exactly the condition which allows the roots corresponding to the circled diagrams to be totally ordered
- The ordering $\Phi\left(A_{1}\right)<\Phi\left(A_{3}\right)<\Phi\left(D_{4}\right)$ is determined by a $\lambda \leqslant 0$ condition.
- Corresponding factorization of \mathbb{E}_{Q} has $1+6+12=19$ terms:

$$
\mathbb{E}_{Q}=\mathbb{E}\left(y_{A_{1}}\right) \cdot\left(\prod_{\sigma \in \Phi\left(A_{3}\right)}^{\sim} \mathbb{E}\left(y_{\sigma}\right)\right) \cdot\left(\prod_{\tau \in \Phi\left(D_{4}\right)}^{\sim} \mathbb{E}\left(y_{\tau}\right)\right) .
$$

- Take alternating orientations of two quivers as above
- Form $A_{3} \square D_{4}$ with grid of vertices $A_{3} \times D_{4}$ and reverse arrows in the full sub-quivers $\{i\} \times D_{4}$ and $A_{3} \times\{j\}$ whenever i is sink in A_{3} and j is source in D_{4}

Square products: a result

Theorem (A.-Rimányi (2016))

For the square product $A_{n} \square A_{m}$ we have the identity

$$
\prod_{(i, \phi) \in \Delta\left(A_{n}\right) \times \Phi\left(A_{m}\right)} \mathbb{E}\left(y_{(i, \phi)}\right)=\prod_{(\psi, j) \in \Phi\left(A_{n}\right) \times \Delta\left(A_{m}\right)} \mathbb{E}\left(y_{(\psi, j)}\right)
$$

for prescribed orders on the root sets above.

- Keller, via cluster algebras/categories
- Find a maximal green sequence of quiver mutations
- From this, perform an algorithm and each side is implicitly defined by the end point of this algorithm
- The result must be the DT-invariant $\mathbb{E}_{Q, W}$
- A.-Rimányi, via topology/geometry
- For each γ, stratify $\operatorname{Rep}_{\gamma}$ (finitely many strata)
- Need theory of quivers with potential (here, sum of all the cycles)
- Spectral sequence in rapid-decay cohomology relates Betti numbers

More wild examples: n-cycles

- Quiver with potential $W=-a_{1} a_{2} \cdots a_{n}$ (a_{i} has head $\left.i\right)$
- Intersects square product case: 4-cycle is $A_{2} \square A_{2}$

Theorem (A. (2018))

Let $n \geqslant 3,1 \leqslant \ell<n$, and $j=n-\ell$. In the completed quantum algebra $\hat{\mathbb{A}}_{\Gamma_{n}}$, we have the following quantum dilogarithm identity

$$
\prod_{\in \Phi\left(A_{n}\right) \backslash\left\{\beta_{0}\right\}} \mathbb{E}\left(y_{\phi}\right)=\prod_{\psi \in \Phi\left(A_{\ell}\right) \times \Phi\left(A_{j}\right)}^{\vec{E}\left(y_{\psi}\right)}
$$

for specified orders on the root sets.

n-cycles, upshot

Theorem (A. (2018))

Let $n \geqslant 3,1 \leqslant \ell<n$, and $j=n-\ell$. In the completed quantum algebra $\hat{\mathbb{A}}_{\Gamma_{n}}$, we have the following quantum dilogarithm identity

$$
\prod_{\Phi\left(A_{n}\right) \backslash\left\{\beta_{0}\right\}} \mathbb{E}\left(y_{\phi}\right)=\prod_{\psi \in \Phi\left(A_{\ell}\right) \times \Phi\left(A_{j}\right)} \mathbb{E}\left(y_{\psi}\right)
$$

for specified orders on the root sets.

- Able to conjecture MGSs which achieve each side via Keller's algorithm by looking at Auslander-Reiten graphs.
- The MGS which achieves the left has length $\left|\Phi\left(A_{n}\right)\right|-1=\frac{1}{2} n(n+1)-1$.
- Conjecture that this is the maximal length of an MGS
- Gives upper bound for No Gap Conjecture (Brüstle, Dupont, Perotin, 2014)

Thank you

