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Brian Burke’s NFL win probability metric

* May be found at www.advancednfistats.com, but the site has
been inactive since Burke joined the ESPN Analytics Depart-
ment in 2015

* Bins every play in a training dataset according to current score,
time remaining, and field position

* Estimates win probability (WP) for a new play by the pro-
portion of training observations in the corresponding bin for
which the team on offense won the game, with some adjust-
ment for down and yards to go for a first down

* Some extrapolation and smoothing used to borrow strength
from bins similar to the one corresponding to the new play



Lock and Nettleton (LN) random forest approach

Similar in some ways to Burke’s, but differs as follows:

* Replaces subjective binning of training data with data-driven
partitioning that minimizes prediction error (random forest)

* Additional variables are included: pre-game point spread, a
variable that combines difference in score with time remain-
ing, number of remaining time-outs each team has, and total
points scored

* Allows for assessment of relative importance of each variable



Data

Training data:
* Data from all plays from 2001-2011 NFL seasons
* n =430, 168 plays
* p = 10 predictor variables
* Response y; is an indicator variable for whether the team on

offense before play i won the game

Test data: Data from all plays from 2012 season



Regression trees

A classification or regression tree is “grown’ by performing a
series of binary splits, each of which splits the p-dimensional
space of predictor variables into two parts according to the
value of just one of the variables

At each split, the single variable is selected and the split-point
is chosen to minimize the misclassification error (a “greedy”
algorithm)

Stops when when a pre-set minimum node size is reached

The end result is a set of (hyper)rectangles corresponding to
the terminal nodes; some “pruning” may then be performed

For a regression tree, the predicted response is the average of
the observations in each terminal node
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Two-predictor illustration (from Elements of Statisti-
cal Learning by Hastie, Tibshirani, and Friedman):




Bagging and random forests

* Predictions corresponding to an input X obtained by trees gen-
erally have low bias but high variance.

* To reduce this variance, bagging (bootstrap aggregation) is a
useful technique: we fit the same regression tree many times
to bootstrap samples of the training data, and average the pre-
dictions.

 This variance may be reduced even more if we can reduce the
correlation between the trees.

* Random forests achieve this by, before each split, randomly
selecting a subset of the predictor variables as candidates for
splitting.



Steps of LN random forest approach

1. Draw a bootstrap sample (of size 430, 168) from the training
dataset and regard these data as belonging to a single node Ny.

2. Randomly select m (taken to be 2) predictor variables from the
10 predictors.

3. For each selected predictor variable x and all possible “cut-
points” ¢, compute the sum of squared errors.
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where N| and N, are the subsets of training observations with
x < c and x > c, respectively, and yy is the average of the y;’s
in N k-



Steps of LN random forest approach, continued

4. Choose the variable and the cutpoint ¢ to minimize the sum of
squared errors in Step 3, and split the training data into two
subnodes accordingly.

5. Repeat Steps 2 through 4 recursively at each resulting subnode
until either:

(a) the number of observations in any subnode is less than
nodesize (a user-supplied tuning parameter taken to be
200), or

(b) the y;’s corresponding to all the observations in a sub-
node are identical.

These 5 steps produce a tree. Repeat them B times to obtain a ran-
dom forest.
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Prediction using the random forest

To predict WP using the random forest:

1. For each tree, trace the path of the new play situation down
the branches of the tree to a terminal node, and obtain the
predicted response for that tree as the proportion of wins in
that terminal node.

2. Average the predicted responses across all B trees in the forest.



Assessing relative importance of predictor variables

Methods:

1. Graphical assessment

* Plot how WP changes when one variable is changed while
holding all the others constant

* See Figure 3 of paper



Assessing relative importance of predictor variables

2. Numerical assessment:
* Randomly permute the values of predictor variable k with
the test set and re-predict WP;

* For each play i compute the squared error after permuta-
tion to the original square error;

* Repeat the above two steps 100 times and compute the
average increase in squared error for play i;

» Average over all plays to obtain a measure of overall im-
portance of the kth predictor variable.

* Opverall, difference in score and spread were the two most
important variables.



Addressing other interesting questions

* Can chart the WP before each play of a game to see how it
evolves over the course of the game (i.e. a time series plot)

* Can determine which play over the course of the game, a sea-
son, etc. resulted in the greatest change in WP

* Can use change in WP after each of several successful play
options to assess coaching decisions. For example, in the 2016
AFC Championship Game, Broncos vs. Patriots, the Patriots
were favored by 3. With 6:03 left in the game and 3 timeouts
remaining, they faced 4th and 1 from the Broncos 16 trailing
20 to 12. Should they go for it or kick a field goal?



Punt, Kick a field goal, or go for it?

If we know, for each of these 3 options,

* the occurrence probability of each potential outcome (punt
returned for touchdown, or punt and net yardage; field goal
made or not made; touchdown scored, first down made or not
made plus yardage, or touchdown scored against); and

* the offense’s WP for each new game situation that results from
each outcome,
then we may compute the expected win probability (EWP) corre-
sponding to that option as

EWP = Z(Probability of outcome) x (Corresponding WP).
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Punt, Kick a field goal, or go for it?

For example, EWP for a field goal at a given distance is
EWPrg = 60 - WP, 410 + (1 — 0)WP,i5
where 6 = probability of a made field goal (at the given distance).

We may use outcomes of all previous field goal attempts (possibly
smoothed by a logistic regression of those outcomes on distance) to
estimate 0 at the given distance.

This approach is due to Zimmerman and Nettleton (2016, Midwest
Sports Analytics Meeting).



Back to the 2016 AFC Championship game...

Coach Bill Belichick elected to go for it, and the Patriots were
stopped short. However, it was the right call at the time since
EWP(field goal attempt) = 0.199, while EWP(go for it) = 0.281.

With 2:25 left in the same game and still 3 timeouts remaining,
the Patriots faced 4th and 6 from the Broncos 14 trailing 20 to
12. Now what should they do?

Belichick elected to go for it again, and they were again stopped
short. This too was the call that maximized EWP, since
EWP(field goal attempt) =0.147 and EWP(go for it) =0.161.

Interestingly, the Patriots lost the game by 2 points, 20 to 18.
If they had kicked a field goal in either one of the two fourth
down situations, they might have won.
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Real-time computing of EWP by coaches?

* NFL has computers on the sidelines and in the pressbox
(http://www.sfgate.com/technology/article/NFL-players-to-use-
tablet-computers-during-games-5665371.php), but it seems they
are allowed to use these only to view static pictures of previ-
ous plays.

* College football doesn’t yet allow computers for any in-game
purpose (http://www.timesunion.com/sports/college/article/Low-
tech-College-football-yet-to-embrace-10914002.php).



