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NCAA Tournament Bracket (from 2022)
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Some elementary probability calculations

Probability of filling out a perfect bracket, if we flip a fair coin to
choose the winner of each game:

0.563
.

= 1.08× 10−19

Probability of picking the winners of all first-round games, if we flip a
fair coin to choose the winner of each game:

0.532
.

= 2.33× 10−10

The seeds supplied by the NCAA Selection Committee give us some
additional info that we might use to increase these probabilities.
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March Madness, Round-2 appearances by seed, 1985-2019
(out of 140)

Seed Round-2 appearances 1st-round win prob.

1 139
2 132
3 119
4 111
5 90
6 88
7 85
8 68
9 72

10 55
11 52
12 50
13 29
14 21
15 8
16 1
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March Madness, Round-2 appearances by seed, 1985-2019
(out of 140)

Seed Round-2 appearances 1st-round win prob.

1 139 0.993
2 132 0.943
3 119 0.850
4 111 0.793
5 90 0.643
6 88 0.629
7 85 0.607
8 68 0.486
9 72

10 55
11 52
12 50
13 29
14 21
15 8
16 1
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Some more elementary probability calculations

Let us suppose that these empirical probabilities are the true probabilities
of each seed winning in the first round. Then:

Probability of picking the winners of all first-round games, if we
always pick the higher-seeded team to win, is

{[139× 132× 119× 111× 90× 88× 85× 68]/1408}4 .
= 0.000032

This is 137, 186 times larger than if we use the coin-flipping strategy.

Can we do even better by using something more refined than seeds to
pick winners?

Consider using a rating system for “team strength.” Several
proprietary rating systems exist (Kenpom, NET, Sagarin, Torvik).
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Quantifying team strength

A well-known statistical approach for ranking and game prediction
methods for sports teams is based on the following assumptions:

The ith team’s strength in a given season (t) can be represented by a
parameter θit

Game outcomes (difference in score, yijk) between teams i and j
depend on their team strengths only via θit − θjt (and on a
home-court advantage parameter)

Then act as though

yijk =

{
H + θi − θj + eijk if xijk = 1
θi − θj + eijk if xijk = 0

where H is the home court advantage (for the given season), the eijk ’s are
uncorrelated random errors having mean 0 and common variance σ2 (for
that season), and

∑
i=1 θi = 0.
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Quantifying team strength

We can estimate the θit ’s and the home-court advantage parameter
by fitting this model using standard regression methodology.

The estimates are very highly correlated with the Sagarin ratings
(r > 0.995).

We can also use these estimates to estimate the win probability of
one of the teams in a given match-up.
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Team strength by seed, 1985-2019
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Estimating NCAA tournament game win probabilities from
team strengths

P(Team i beats Team j) = P(yijk > 0)

= P(θi − θj + eijk > 0)

= P(eijk > θj − θi )

= P

(
eijk
σ

<
θi − θj
σ

)
= Φ

(
θi − θj
σ

)
where for the last two steps we added an assumption that the errors are
normally distributed (Φ is the normal cdf).
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Estimating NCAA tournament game win probabilities from
team strengths, continued

This last quantity, though unknown, may be well-estimated by

Φ

(
θ̂i − θ̂j
σ̂

)

Example — First-round match-up between Iowa State (5-seed) and
Nevada (12-seed) in 2017:

Φ

(
θ̂ISU,2017 − θ̂NEV ,2017

σ̂2017

)
= Φ

(
20.051− 9.826

10.487

)
= 0.835
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Upsets

Define an upset w.r.t. seed as a lower-seeded team beating a
higher-seeded team. On average, there were 8.25 such upsets in the
first round (out of 32 possible) from 1985-2019.

Define an upset w.r.t. strength as a weaker team beating a
higher-seeded team. On average, there were 6.4 such upsets in the
first round from 1985-2019.

Thus, using team strength, perhaps you can improve slightly upon a
first-round strategy of picking only higher-seeded teams to win.

It may still be beneficial to choose some upsets (of either kind) if you
want to set your bracket apart from others in a pool.

13 / 15



March Madness, Round-2 and Sweet 16 appearances by
seed, 1985-2019

Seed Round-2 appearances Sweet 16 appearances

1 139 120
2 132 89
3 119 74
4 111 66
5 90 47
6 88 42
7 85 27
8 68 13
9 72 7

10 55 23
11 52 22
12 50 21
13 29 6
14 21 2
15 8 1
16 1 0
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The middle-seed anomaly

Refers to the fact that 10-, 11-, and 12- seeds make it to the Sweet
16 much more than 8- and 9-seeds, and almost as often as 7-seeds.

Largely due to 10-, 11-, and 12-seeds performing very well in the
second round (relative to their team strengths).

It suggests that it is not a bad strategy (especially to set your bracket
apart from others) to ride, all the way to the Sweet 16, whichever
10-, 11-, and 12-seeds you pick to win their first-round games.

The middle-seed anomaly disappears after the Sweet 16, so don’t ride
them any farther.
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