
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=utas20

Download by: [University of Iowa Libraries] Date: 03 February 2017, At: 07:03

The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: http://www.tandfonline.com/loi/utas20

Revisiting Olympic Track Records: Some Practical
Considerations in the Principal Component
Analysis

Dayanand N. Naik & Ravindra Khattree

To cite this article: Dayanand N. Naik & Ravindra Khattree (1996) Revisiting Olympic Track
Records: Some Practical Considerations in the Principal Component Analysis, The American
Statistician, 50:2, 140-144

To link to this article:  http://dx.doi.org/10.1080/00031305.1996.10474361

Published online: 17 Feb 2012.

Submit your article to this journal 

Article views: 28

View related articles 

Citing articles: 3 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=utas20
http://www.tandfonline.com/loi/utas20
http://dx.doi.org/10.1080/00031305.1996.10474361
http://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00031305.1996.10474361
http://www.tandfonline.com/doi/mlt/10.1080/00031305.1996.10474361
http://www.tandfonline.com/doi/citedby/10.1080/00031305.1996.10474361#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00031305.1996.10474361#tabModule


Considerations in the 
Revisiting Olympic Track Records: Some Practical 

Principal Component Analysis 
Dayanand N. NAIK and Ravindra KHATTREE 

In some practical problems where a principal component 
analysis is utilized, the use of the variance covariance ma- 
trix of an appropriately defined set of variables, rather than 
the correlation matrix, may be more meaningful. This is il- 
lustrated through the analysis of 1984 Olympic records data 
on various track events. The analysis results in conclusions 
that are more appealing to intuition and that are also con- 
sistent with a retrospective visual examination of the data 
on certain leading countries in their athletic excellence. 

KEY WORDS: Athletic excellence; Correlation matrix; 
Principal component analysis; Ranking; Track records; 
Variance covariance matrix. 

1. INTRODUCTION 
Principal component analysis is one of the useful tech- 

niques of multivariate statistics, being commonly used for 
the reduction of the dimensionality of datasets. The start- 
ing point of a principal component analysis is the spectral 
decomposition of either a variance covariance matrix, or a 
correlation matrix, with the objective of identifying only a 
few but most informative and mutually uncorrelated vari- 
ables. It is well known that principal component analysis 
results based on these two matrices can be quite different 
(Johnson and Wichern 1992). However, in the standard text- 
books on multivariate analysis no clear guidelines on which 
of the matrices should be used are provided. The objective 
of this short communication is to provide some guidelines 
for this choice, and also to provide some cautions and con- 
siderations to help one decide on the appropriate choice of 
variables for the analysis. We show that for ranking nations 
based on their athletic excellence in 1984 Olympic track 
events, intuitively appealing and more meaningful results 
can be obtained by using the variance covariance matrix 
(instead of the correlation matrix) of variables that are de- 
fined based on certain physical considerations. For illustra- 
tion we restrict ourselves to the Olympic track records data 
given in Dawkins (1989) as the focal point of discussion. 

The Olympic track records dataset obtained from 
Belcham and Hymans (1984) was first analyzed using prin- 
cipal components by Dawkins (1989), with the goal of 
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ranking nations based on their athletic excellence in track 
events. These data are also provided in Johnson and Wich- 
ern (19921, and can be successfully used to illustrate various 
aspects of principal component analysis in the classroom. 
The data consist of 1984 Olympic track records of 55 na- 
tions for women as well as men. The data matrix for women 
is a 55 x 7 matrix with seven events represented, these being 
the 100 meters, 200 meters, 400 meters, 800 meters, 1,500 
meters, 3,000 meters, and marathon (which is 26.2 miles or 
42,195 meters long). For the men the corresponding matrix 
is of order 55 x 8, differing from the women’s events in 
that the 3,000 meters was excluded, but the 5,000 meters 
and 10,000 meters were included. 

2. THE ANALYSIS 
Dawkins (1989) chose to first rescale the variables in each 

of the two data sets to have mean 0 and standard deviation 
1, making them unit free, on the grounds that all the vari- 
ables are equally important, and hence should somehow be 
brought to an equal footing. This, in turn, amounts to us- 
ing the spectral decomposition of the sample correlation 
matrix instead of the sample variance covariance matrix 
(of the time taken by the athletes in the events) to obtain 
the principal components. His objection to the sample vari- 
ance covariance matrix as a choice for the analysis was also 
based on the argument that if the raw data were to be ana- 
lyzed using the same time unit, the variable represented by 
the time taken in the marathon, due to its larger amount of 
variability, would be weighted excessively in the analysis. 

Dawkins’s objections are well taken, and one would read- 
ily agree with his concerns. However, his choice of the cor- 
relation matrix as the focal point of analysis is suspect in 
that by forcing all the track records variables to have equal 
variance by such scaling, the purpose of partitioning the 
total variability and perhaps the very objective of identify- 
ing those variables that contribute more significantly to the 
total variability have been defeated. 

How do we bring all the variables to an “equal footing” 
while still admitting the possibility that more variability 
across the nations may be found in certain specific track 
events? For this, one must obviously use the variance co- 
variance matrix as the basic object for the analysis, but it 
should correspond to variables that represent characteristics 
common to all of the events. “Total time taken” is certainly 
not such a variable. To compare the athletic performances 
of nations, the appropriate variables should be rate or speed 
related rather than the total time taken. A variable that may 
be more relevant in this context is the speed itself, defined 
as the “distance covered per unit time.” This variable suc- 
ceeds in retaining the possibility of having different degrees 
of variability in different variables. We will therefore use 
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Table 1. Speeds for the Track Events (Women) 

Country 100 m 200 m 

Argentina 
Australia 
Austria 
Belgium 
Bermuda 
Brazil 
Burma 
Canada 
Chile 
China 
Columbia 
Cook Island 
Costa Rica 
Czechoslovakia 
Denmark 
Dominican Rep. 
Finland 
France 
GDR 
FRG 
GB & NI 
Greece 
Guatemala 
Hungary 
India 
Indonesia 
Ireland 
Israel 
Italy 
Japan 
Kenya 
Korea 
DPRKorea 
Luxembourg 
Malaysia 
Mauritius 
Mexico 
Netherlands 
New Zealand 
Norway 
Guinea 
Philippines 
Poland 
Portugal 
Romania 
Singapore 
Spain 
Sweden 
Switzerland 
Taipei 
Thailand 
Turkey 
USA 
USSR 
Western Samoa 

8.61 
8.93 
8.75 
8.76 
8.73 
8.84 
8.24 
9.09 
8.33 
8.37 
8.62 
7.75 
8.36 
9.02 
8.76 
8.48 
8.98 
8.97 
9.25 
9.08 
9.09 
8.48 
8.45 
8.73 
8.37 
8.44 
8.75 
8.73 
8.86 
8.53 
8.53 
8.36 
8.1 6 
8.31 
8.1 8 
8.50 
8.41 
8.89 
8.66 

8.1 6 
8.50 
8.98 
8.47 
8.74 
8.13 
8.47 
8.96 
8.73 
8.91 
8.51 
8.35 
9.27 
9.04 
7.85 

8.64 

8.72 
8.95 
8.66 
8.68 
8.68 
8.63 
8.1 7 
8.99 
8.16 
8.19 
8.33 
7.38 
8.13 
9.10 
8.50 
8.32 
8.93 
8.85 
9.21 
8.93 
9.04 
8.31 
8.1 5 
8.67 
8.24 
8.25 
8.51 
8.49 
8.70 
8.33 
8.38 
8.17 
7.76 
8.01 
8.26 
7.97 
8.47 
8.77 
8.65 
8.58 
7.98 
8.50 
9.00 
8.26 
8.53 
8.00 
8.34 
8.76 

8.84 
8.18 
8.18 
9.1 6 
9.01 
7.74 

8.58 

400 m 

7.34 
7.83 
7.90 
7.69 
7.50 
7.58 
7.27 
7.99 
7.29 
7.28 
7.51 
6.62 
6.87 
8.34 
7.46 
7.1 4 
7.98 
7.73 
8.31 
8.04 
7.93 
7.28 
7.13 
7.77 
7.46 
7.23 
7.51 
7.29 
7.69 
7.44 
7.59 
7.18 
7.81 
7.13 
7.26 
6.88 
7.44 
7.64 
7.75 
7.53 
7.02 
7.33 
8.12 
7.37 
7.81 
7.26 
7.46 
7.72 
7.53 
7.62 
7.17 
7.09 
7.90 
8.13 
6.81 

800 m 

6.20 
6.73 
6.70 
6.67 
6.17 
6.35 
6.12 
6.67 
6.50 
6.41 
6.32 
5.80 
6.03 
7.05 
6.57 
5.95 
6.57 
6.67 
6.91 
6.84 
6.73 
6.44 
5.85 
6.63 
6.35 
6.01 
6.50 
6.35 
6.80 
6.38 
6.67 
6.20 
6.77 
6.44 
6.09 
5.87 
6.54 
6.70 
6.60 
6.57 
5.95 
6.09 
6.84 
6.38 
6.94 
6.29 
6.50 
6.60 
6.60 
6.35 
6.06 
6.20 
6.80 
7.05 
5.72 

1,500 m 

5.64 
6.05 
5.92 
6.04 
5.46 
5.57 
5.62 
6.1 6 
5.91 
5.77 
5.75 
5.17 
5.34 
6.04 
5.98 
5.27 
6.10 
6.04 
6.31 
6.20 
6.20 
5.75 
5.1 4 
6.04 
5.79 
5.42 
6.08 
5.88 
6.28 
5.75 
6.02 
5.66 
5.88 
5.71 
5.33 
5.22 
5.88 
6.1 6 
5.98 
6.23 
5.1 7 
5.43 
6.27 
6.01 
6.31 
5.53 
6.04 
6.07 
6.14 
5.71 
5.30 
5.72 
6.33 
6.46 
4.30 

3,000 m 

5.1 1 
5.51 
5.35 
5.63 
5.1 0 
5.1 2 
5.26 
5.68 
5.34 
5.37 
5.29 
4.50 
4.79 
5.61 
5.74 
5.06 
5.61 
5.57 
5.71 
5.82 
5.80 
5.07 
4.74 
5.57 
5.01 
4.99 
5.62 
5.34 
5.79 
5.43 
5.43 
5.20 
5.35 
5.1 9 
4.78 
4.59 
5.21 
5.55 
5.71 
5.86 
4.68 
4.92 
5.57 
5.66 
5.86 
5.03 
5.54 
5.66 
5.70 
5.19 
4.86 
5.33 

5.92 
3.83 

5.88 

Marathon 

3.94 
4.62 
4.41 
4.46 
4.14 
4.1 7 
3.68 
4.71 
4.1 0 
4.17 
4.25 
3.02 
4.09 
4.43 
4.63 
3.45 
4.56 
4.53 
4.46 
4.73 
4.70 
3.86 
3.27 
4.50 
3.74 
3.49 
4.71 
4.38 
4.63 
4.67 

4.27 
3.93 
4.03 
3.86 
2.69 
4.44 
4.61 
4.83 
4.83 
3.02 
3.51 
4.37 
4.65 
4.25 
3.85 
4.33 
4.55 
4.58 
3.95 
4.17 
3.50 
4.93 
4.65 
2.30 

3.88 

the speeds in the track events as the variables for the princi- 
pal component analysis. The separate analyses will be per- 
formed for the data sets on women and men, respectively. 
These two sets (rounded to two digits after the decimal) are 
presented in Tables 1 and 2, respectively. The corresponding 
raw data on total time taken are available in Dawkins. 

The principal components are calculated using procedure 
PRINCOMP of the SAS software. As mentioned earlier, 
the sample variance covariance matrix of the variables, dis- 
tances (in meters) covered per second for the various track 

events, and not the correlation matrix, is used for both data 
sets. Table 3 presents the coefficients of various track events 
in the first two principal components. Also presented in the 
same table are the coefficients of the first two principal com- 
ponents extracted from the sample correlation matrix of the 
original raw data. 

Some interesting features of the analysis are worth ob- 
serving. Justifiably so, the variables depicting the higher 
levels of variability have been assigned the larger weights 
in the first principal component for both datasets. As in 
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Table 2. Speeds for the Track Events (Men) 

Country 100 m 200 m 400 m 800 m 1,500 m 5,000 m 10,000 m Marathon 

Argentina 
Australia 
Austria 
Belgium 
Bermuda 
Brazil 
Burma 
Canada 
Chile 
China 
Columbia 
Cook Island 
Costa Rica 
Czechoslovakia 
Denmark 
Dominican Rep. 
Finland 
France 
GDR 
FRG 
GB & NI 
Greece 
Guatemala 
Hungary 
India 
Indonesia 
Ireland 
Israel 
Italy 
Japan 
Kenya 
Korea 
DPRKorea 
Luxembourg 
Malaysia 
Mauritius 
Mexico 
Netherlands 
New Zealand 
Norway 
Guinea 
Philippines 
Poland 
Portugal 
Romania 
Singapore 
Spain 
Sweden 
Switzerland 
Taipei 
Thailand 
Turkey 
USA 
USSR 
Western Samoa 

9.62 
9.70 
9.58 
9.67 
9.73 
9.78 
9.40 
9.83 
9.67 
9.51 
9.59 
8.21 
9.14 
9.66 
9.47 
9.86 
9.59 
9.89 
9.88 
9.84 
9.89 
9.78 
9.1 1 
9.75 
9.43 
9.44 
9.43 
9.34 
9.99 
9.67 
9.56 
9.67 
9.1 7 
9.66 
9.62 
8.94 
9.60 
9.51 
9.51 
9.48 
9.12 
9.28 
9.84 
9.50 
9.61 
9.63 
9.60 
9.76 
9.64 
9.44 
9.62 
9.34 

10.07 
9.93 
9.24 

9.61 
9.97 
9.61 
9.67 
9.72 
9.79 
9.29 
9.89 
9.62 
9.51 
9.50 
8.62 
9.13 
9.69 
9.75 
9.69 
9.67 
9.81 
9.84 
9.82 
9.90 
9.66 
9.17 
9.70 
9.34 
9.31 
9.54 
9.52 

10.14 
9.61 
9.68 
9.57 
9.1 2 
9.63 
9.56 
8.91 
9.39 
9.55 
9.58 
9.45 
9.1 8 
9.24 
9.88 
9.45 
9.53 
9.40 
9.63 
9.70 
9.78 
9.39 
9.48 
9.33 

10.13 
10.00 
9.15 

8.54 
8.92 
8.54 
8.88 
8.71 
8.85 
8.28 
8.76 
8.66 
8.46 
8.68 
7.56 
8.22 
8.76 
8.72 
8.55 
8.79 
8.83 
8.91 
8.99 
8.90 
8.59 
8.26 
8.69 
8.75 
8.37 
8.64 
8.37 
8.84 
8.72 
8.90 
8.53 
8.46 
8.44 
8.64 
8.39 
8.68 
8.87 
8.68 
8.56 
8.35 
8.65 
8.82 
8.57 
8.72 
8.44 
8.70 
8.77 
8.74 
8.55 
8.35 
8.40 
9.1 2 
8.97 
8.1 6 

7.37 
7.66 
7.45 
7.71 
7.41 
7.71 
7.41 
7.58 
7.45 
7.37 
7.33 
6.60 
7.13 
7.58 
7.49 
7.33 
7.66 
7.71 
7.71 
7.71 
7.84 
7.49 
7.05 
7.53 
7.58 
7.25 
7.45 
7.53 
7.71 
7.45 
7.71 
7.45 
7.21 
7.33 
7.33 
7.09 
7.41 
7.66 
7.66 
7.58 
7.02 
7.37 
7.58 
7.45 
7.58 
7.09 
7.58 
7.53 
7.49 
7.45 
7.29 
7.45 
7.71 
7.62 
6.60 

6.76 
7.00 
6.94 
6.94 
6.67 
6.83 
6.49 
6.89 
6.74 
6.70 
6.68 
5.90 
6.51 
6.98 
6.93 
6.54 
6.93 
7.00 
7.02 
7.08 
7.12 
6.87 
6.58 
6.91 
6.70 
6.38 
7.02 
6.72 
6.94 
6.87 
7.04 
6.63 
6.63 
6.81 
6.58 
6.53 
6.85 
6.91 
7.06 
6.91 
6.23 
6.53 
6.94 
6.91 
6.87 
6.43 
7.04 
6.93 
7.04 
6.63 
6.51 
6.81 
7.08 
6.96 
5.90 

5.94 
6.28 
6.28 
6.30 
5.68 
6.12 
5.77 
6.1 5 
6.1 2 
6.00 
6.1 8 
4.99 
5.94 
6.21 
6.1 7 
5.59 
6.28 
6.25 
6.33 
6.31 
6.41 
5.71 
5.89 
6.1 8 
6.05 
5.66 
6.26 
6.1 0 
6.30 
6.21 
6.36 
5.97 
5.90 
6.1 1 
5.69 
5.53 
6.19 
6.24 
6.31 
6.25 
5.66 
5.65 
6.27 
6.35 
6.29 
5.52 
6.26 
6.27 
6.30 
5.92 
5.47 
6.1 5 
6.31 
6.31 
5.1 2 

5.68 
6.03 
6.01 
6.07 
5.46 
5.82 
5.50 
5.93 
5.69 
5.72 
5.98 
4.71 
5.79 
5.91 
5.93 
5.30 
6.06 
5.96 
6.08 
6.04 
6.06 
5.86 
5.54 
5.86 
5.79 
5.41 
5.99 
5.76 
6.06 
6.01 
6.09 
5.70 
5.62 
5.73 
5.37 
5.25 
5.96 
6.04 
6.02 
6.02 
5.31 
5.44 
5.98 
6.09 
6.02 
5.32 
6.01 
5.97 
5.97 
5.54 
5.1 2 
5.83 
6.08 
6.05 
4.80 

5.1 1 
5.48 
5.1 7 
5.41 
4.80 
5.28 
5.03 
5.40 
5.25 
5.27 
5.35 
4.27 
5.15 
5.24 
5.38 
4.56 
5.37 
5.32 
5.41 
5.32 
5.45 
5.22 
5.05 
5.30 
5.33 
4.73 
5.31 
5.1 1 
5.37 
5.47 
5.42 
5.1 6 
5.37 
4.98 
4.56 
4.62 
5.44 
5.45 
5.45 
5.35 
4.74 
4.84 
5.34 
5.47 
5.31 
4.46 
5.35 
5.38 
5.36 
5.05 
4.69 
5.35 
5.48 
5.39 
4.35 

Dawkins, here also the first principal component measures 
the general athletic excellence of a given nation. This is 
not surprising because here as well as in Dawkins’s anal- 
ysis the corresponding variance covariance and correlation 
matrices have all nonnegative entries. Hence by the Perron- 
Frobenius Theorem, all of the coefficients in the first prin- 
cipal component will have the same sign. Assuming that all 
signs are positive, the first principal component will then 
represent a weighted average of all the speeds in the various 
track events. Thus larger scores on the first principal com- 
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ponent correspond to higher levels of athletic excellence. 
The second principal component also has (as in Dawkins) an 
interpretation as a measure of differential achievement. For 
both data sets the coefficients in the respective second prin- 
cipal components of the short races are positive and those 
for long races are negative. The medium distance races have 
been assigned practically negligible coefficients-a feature 
not so pronounced in Dawkins’s analysis. Nonetheless, the 
percentages of total variability explained by the first prin- 
cipal component and the first and second components cu- 



Table 3. Coefficients in the First Two Principal Components 

Men Women 

Ours Dawkins Ours Dawkins 

First Second First Second First Second First Second 
PC PC PC PC PC PC PC PC 

.32 .60 .32 .57 .29 .43 .37 .49 

.32 .47 .34 .46 .34 .56 .37 .54 

.31 .23 .36 .25 .34 .38 .38 .25 

.31 .06 .37 .01 .31 .01 .38 -.16 

.34 -.08 .37 -.14 .39 -.20 .39 -.36 

.41 -.30 .36 -.31 .40 -.25 .39 -.35 

.41 -.30 .37 -.31 .53 -.51 .37 -.37 

.38 -.42 .34 -.44 

mulatively remain comparable to Dawkins’s for both data 
sets. 

The top 10 nations, based on their athletic excellence as 
represented by their scores on the first principal component, 
are listed in Table 4. For comparison we also provide the 
rankings based on the first principal component extracted 
from the corresponding sample correlation matrices. These 
rankings were also reported in Tables 1 and 3 of Dawkins. 
It is observed that the nations in the top 10 lists, for men as 
well as women, are the same as those given by Dawkins. For 
men’s track events, the rankings are essentially the same, 
except that Kenya now outranks France, and their previ- 
ously assigned ranks as ninth and eighth are now switched. 
A visual examination of the men’s raw data on these two 
countries (presented in Table 5 )  puts more intuitive confi- 
dence in our ranking in that France was able to outdo Kenya 
in only two races of relatively short lengths (namely, 100 
and 200 meters) out of a total of eight. This observation 
also seems to question the validity of the promise that the 
correlation matrix assigns all of the track events equal im- 
portance. 

The differences in our rankings of nations and that by 
Dawkins are more in contrast for the women’s data. Al- 
though the top ten list is still the same, the United States, 
earlier ranked as third based on the principal component 
analysis of the correlation matrix, now emerges as the win- 
ner! The GDR, on the other hand, is now ranked as third, 
while the previous analysis declares it as number one. May 
we add with a bit of humor and sporting spirit, for our Ger- 

Table 4. Rankings of Top 10 Nations 

Men Women 

Ours Dawkins Ours Dawkins 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

USA 
GB & NI 
Italy 
USSR 
GDR 
FRG 
Australia 
Kenya 
France 
Belgium 

1 
2 
3 
4 
5 
6 
7 
9 
8 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

USA 
USSR 
GDR 
FRG 
GB & NI 
Czech 
Canada 
Poland 
Italy 
Finland 

3 
2 
1 
5 
6 
4 
8 
7 

10 
9 

Table 5. Men’s Track Record Data: Time Taken* 
by Eighth and Ninth Rank Holders 

Track event France Kenya 

100 rn 10.1 1 10.46 
200 rn 20.38 20.66 
800 rn 1.73 1.73 

1,500 rn 3.57 3.55 
5,000 rn 13.34 13.10 

10,000 rn 27.97 27.38 
Marathon 132.30 129.75 

’ The first three times are in seconds, and the remaining in minutes 

man readers, that although unintentionally, we have now set 
the (track) records straight! Similar shuffling of the coun- 
tries is observed down the list. For example, countries with 
previous ranks of 4, 5, and 6 have interchanged their places 
among themselves; countries with earlier ranks 7 and 8 have 
interchanged their rankings, and the same is observed for 
the ninth and tenth ranks. 

A visual examination of data on GDR and the United 
States is worth pursuing. It is presented in Table 6. The 
United States is ahead in four out of seven races. Among 
these four, three are the long distance races, and for the 
longest two (3,000 meters and marathon), the considerable 
superiority of the United States over GDR is unquestion- 
able. However, this information is lost as soon as the data 
are scaled to have unit standard deviations for all variables 
because the considerable amount of variability across na- 
tions in the last two races, especially the marathon, has been 
wrongly removed, thereby defeating the basic objective of 
the principal component analysis. 

It is worth pointing out that the nations earlier ranked 
as fourth-sixth based on the first principal component ex- 
tracted from the correlation matrix, namely Czechoslovakia 
(Czech), France, and Great Britain and Northern Ireland 
(GB & NI), seem to follow a more natural ranking when 
the first principal component is extracted from the sample 
variance covariance matrix. Heuristically speaking, France 
outperforms Czech as well as GB & NI by 4:3:0 and 4:2:1, 
respectively (the third number indicates the number of ties). 
Among GB & NI and Czech the overall performance results 
in 4:3:0. This intuitively indicates that among the three, a 
more appropriate ranking may be France followed by GB 
& NI followed by Czech. This is precisely the ranking one 
obtains when the variance covariance matrix is used. How- 

Table 6. Women’s Track Record Data: Time Taken* 
by First and Third Rank Holders 

Track event USA GDR 

100 rn 10.81 10.79 
200 rn 21.71 21.83 
400 rn 48.16 50.62 
800 rn 1.93 1.96 

1,500 rn 3.96 3.95 
3,000 rn 8.75 8.50 
Marathon 157.68 142.72 

* The first three times are in seconds, and the remaining in minutes. 
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Table 7. Values of  Sample Coefficients of Skewness for x and y 

Men Women 

Event X Y Event X Y 

100 rn 
200 m 
400 rn 
800 rn 

1,500 rn 
5,000 rn 

10,000 rn 
Marathon 

-1.83 
-.66 

-1.30 
- 1.48 
-1.40 
-1.35 
-1.37 
-1.32 

~~ 

2.32 100 rn -.25 .47 
.91 200 rn -.25 .53 

1.70 400 rn .06 .20 
1.77 800 m -.27 .47 
1.70 1,500 rn -1.12 1.86 
1.62 3,000 rn -1.04 1.80 
1.69 Marathon -1.22 2.30 
1.51 

ever, the use of the correlation matrix as in Dawkins’s re- 
sults in Czech being declared as the fourth place holder. 

As an alternative to speed another variable that may seem 
relevant is “time taken to cover a unit distance.” Between 
the two variables, time (in seconds) taken to cover 1 meter 
distance, say y, and the distance (in meters) covered per sec- 
ond, say x, which one is more appropriate? It is well known 
that the sample variance may not be an adequate representa- 
tive of the true variance for populations that are skewed. In 
fact, Rao (1981, p. 124) points out that the “quadratic loss 
function places undue emphasis on large deviations which 
may occur with small probability.” If the principal compo- 
nent analysis is the potential technique of choice, then the 
answer would lie in examining the variables y and x for 
possible symmetry of their distributions. It is advisable to 
choose that population as the frame of reference that is not 
overly skewed, for the situation may be especially poor for 
skewed populations. Because the underlying principle be- 
hind a principal component analysis is an appropriate par- 
titioning of the total variance into the variances of several 
uncorrelated components, we examine the data sets for the 
variables y as well as IC, and choose the one exhibiting less 
skewness, with the hope that the sample estimates of the 
variances and covariances from the less skewed population 
will be better representatives of their population counter- 
parts. An examination of the coefficients of skewness, as 
well as the box plots and the stem and leaf plots for all 
track events, suggest that the variable IC, the distance (in 
meters) covered per second, may be the variable of choice 
for both the data on men and that on women. The sample 
coefficients of skewness for x as well as y are listed in Ta- 
ble 7 for both datasets and for all track events within the 
particular dataset. We have suppressed the presentation of 
all 30 box plots and 30 stem and leaf plots to save space. It 
may be pointed out that the raw data on the total times taken 
(and their scaled versions used by Dawkins) would have the 
same skewness as those for y, and the corresponding plots 
will also exhibit the same patterns. 

One of the referees has pointed out that using the average 
(or sum) of all seven or eight speed records also results in 
a ranking very similar to ours. The only differences are the 
ranks of Kenya and France for men and ranks of GB & 
NI and Czech for women. Although there possibly is no 
general theoretical reason for such an agreement, it is not 
surprising for this data set. The coefficients of all speeds 

corresponding to this intuitive index (such that the sum of 
squares of these coefficients is unity) are 7-ll2 = .38 for 
women’s data and S1/’ = .35 for men’s data. Most of the 
coefficients obtained by us are close to these values. 

3. CONCLUSION 
The intent of this article was to discuss certain issues 

in principal component analysis that are usually not dis- 
cussed in textbooks. These are illustrated through the 1984 
Olympic track events data, for which the consideration 
of these issues leads to conclusions that are more in line 
with intuition, especially when the raw data are visually or 
graphically examined. In essence, we suggest the following. 
(1) Standardization of the original variables, and hence the 
use of a correlation matrix, may not always be the correct 
choice in a principal component analysis. It may destroy the 
natural and relevant variability present in the data for cer- 
tain variables. In other words, the fact that the variables are 
equally important should not be taken to mean that all the 
variances must be artificially forced to be equal. Further, as 
we saw in the comparison of the men’s data on Kenya and 
France, use of the correlation matrix does not guarantee 
that all the variables are indeed being treated equally. (2) 
Transformations may be used to obtain variables that are 
more meaningful in measuring the characteristics meant to 
be measured. For example, judging relative athletic excel- 
lence has required variables related to speeds, not the total 
times taken in the various events (which are quite uneven 
with respect to distances covered). Hence the extraction of 
principal components should be based on the variance co- 
variance matrix of these new variables. (3) The variances 
and total variance are more meaningful indices for measur- 
ing variability in data sets that are symmetric. For datasets 
exhibiting skewness they may not represent the information 
about variability to its fullest or even adequately. Because a 
principal component analysis is primarily a partitioning of 
the total variance, one should prefer variables that exhibit 
relatively more symmetry over those that are skewed. In the 
datasets considered here and for all of the track events vari- 
ables representing distance covered per unit time showed 
relatively less skewness than those representing the time 
taken to cover unit distance, and hence the former set of 
variables is a more appropriate choice. 
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