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Geocoding context

• Applications of spatial statistics to public health and social
sciences are increasing

• Require defining a spatial location for each subject

• Historically, a person’s spatial location has been defined as
their place of residence

• The residential address is assigned a location reference, or
geocode

• The geocode may be a statistical tabulation area (e.g. cen-
sus tract) or point (lat-long) coordinates; we consider point
geocodes only

• The process for assigning the geocode is known as geocoding
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Geocoding methods

1. Visit each address with a GPS receiver

2. Use maps from aerial or satellite imagery together with parcel
descriptions from county assessors

3. Street geocoding — Use a geographic information system (GIS)
to match an address to a street name and address range (a
“street segment”) in a digitized street centerline file, and then
interpolate the address along this segment

• The digitized street centerline files most often used are
the U.S. Census Bureau TIGER/Line files (or enhanced
versions thereof)

• Many social/public health studies utilize the services of
a commercial geocoding firm
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Pros and cons of street geocoding

Pros:

• cheaper

• more convenient (hence much more common)

Cons:

• less accurate

• less complete
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Inaccuracy and incompleteness of street geocoding

At least 10 studies have been published measuring accuracy by dis-
tance between the street geocode and the “true” location (ascertained
by GPS or imagery). These show that:

• Positional errors of several hundred meters occur regularly

• Errors tend to be larger in rural areas

• E.g., in a study involving rural addresses in 4 counties in up-
state NY, 10% geocoded with errors > 1.5 km, and 5% geocoded
with errors > 2.8 km
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At least 6 studies of completeness of automated geocoding have
been published. These show that:

• It is common for 10% to 40% of the addresses of study sub-
jects to fail to geocode

• The problem is worst in rural areas
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Potential effects

• Positional errors and incompleteness reduce power (by an un-
known amount) for detecting clusters, trends, and associations
with spatial covariates

• Inferences made by applying complete-data methods to the
incomplete data are subject to selection bias (geographic bias)
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Research goals

• Gain an understanding of the nature of the measurement er-
rors and incompleteness (including geographic bias) associ-
ated with street geocoding

• Determine magnitudes of their effects on existing spatial meth-
ods of analysis

• Modify existing methods of analysis so as to properly account
for them
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Carroll County example

• We have a complete database of 9298 addresses in Carroll
County, Iowa, current as of 12-31-05

• Obtained in conjunction with a comprehensive study of rural
health by UI researchers

• A “true” geocode (using 2-ft resolution aerial imagery) was
obtained for each address

• The addresses were street-geocoded as well

• Of the 9892 addresses, 7443 (80%; 64.3% for rural addresses,
85.4% for municipal addresses) could be street-geocoded us-
ing a 60%-matching criterion

• Zip codes were observed for all 9892 addresses

10



Locations of 7443 Carroll County addresses that street-geocoded:
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Geocoding errors for rural addresses ranged from 3 m to 2896 m
(median 168 m):
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Features of this error distribution: Clustering along axes
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Features of this error distribution: Asymmetry wrt origin
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Features of this error distribution: Outliers
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Features of this error distribution: Parallel strands straddling
each axis
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Explanations?

• Greek cross shape — rectilinearity of street network, sizable
addressing or interpolation errors

Errors tend to be aligned with the axial orientation of the cor-
responding street segment.
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Decomposition of errors by the primary orientation (E-W or N-S) of
the street on which the corresponding address lies:
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Explanations? (continued):

• Asymmetry wrt origin — systematic addressing or interpola-
tion error

• Straddling strands — offsets from street centerline

• Outliers — very large offsets or TIGER file errors/omissions
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Modeling the error distribution

• No uniform or normal distribution will fit adequately

• Nor will any elliptical distribution

• But mixtures of normal or t distributions may fit well:

f (x;p,θ) =
g

∑
i=1

pi fi(x;θ)

where pi ≥ 0 (i = 1, . . . ,g), ∑
g
i=1 pi = 1, and fi(·) is a normal

or t pdf

• Methodology and free software are available for likelihood-
based estimation of (p,θ); see e.g. Peel and McLachlan (2000,
Statistics and Computing)

20



Fitted model:

• Normal and t mixtures of order 1 to 8 were fitted

• For a given order, the t mixture always fit better

• The 3- and 4-component t mixtures fit best (on the basis of
BIC)

• Likelihood-based parameter estimates for the 3-component t
mixture:

Component p µX µY σX σY ρ df
1 0.571 -12.1 -10.7 61.6 54.1 -0.05 1.6
2 0.253 -4.7 -350.0 75.9 550.0 0.18 6.5
3 0.176 352.8 -12.6 540.3 84.9 -0.03 16.7
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If errors are expressed relative to the alignment of the corresponding
street (i.e. the N-S axis is rotated 90 degrees counterclockwise), a
2-component t mixture has even smaller BIC.
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Simulated data from the fitted 3-component t mixture model
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Comparison to observed error distribution:
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Spatial autocorrelation among geocoding errors
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Locations of addresses corresponding to the larger ellipse:
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Variogram of rural positional errors:
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Effects of spatial autocorrelation among geocoding er-
rors

Generally, spatial autocorrelation among the geocoding errors miti-
gates the loss of power attributable to them.

Demonstration:

• Superimposed upon a subset of 998 rural addresses in southern
portion of Carroll County, we simulate 1000 realizations of a
spatially clustered binary (cases and controls) disease process

• Realizations generated from a Gaussian random field thresh-
old model, with varying proportions of cases (π) and correla-
tion ranges

• Compute empirical power for Cuzick-Edwards test for disease
clustering
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• Repeat for geocoded addresses, and for locations obtained by
independent sampling from the empirical distribution of 998
geocoding errors

Address locations
Range Diseased fraction Ground-truthed Geocoded Indep. error

500 0.017 0.664 0.517 0.443
0.033 0.831 0.629 0.540
0.067 0.987 0.918 0.874

1000 0.017 0.787 0.701 0.619
0.033 0.944 0.842 0.771
0.067 1.000 0.988 0.976

2000 0.017 0.895 0.813 0.780
0.033 0.985 0.936 0.917
0.067 1.000 0.994 0.995
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Summary of features of geocoding errors

Geocoding errors have been found to be:

• non-normally distributed

• spatially autocorrelated

• systematically related to geographic covariates (e.g. rurality,
length of street segment)

Proper studies of effects of geocoding errors, and the development
of methods for incorporating them in analyses, should account for
these features.
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Measurement-error methods for intensity estimation

Consider a 2-D inhomogeneous Poisson process on study area D,
with intensity function

λ (s) = lim
|b(s)|→0

(
E[N{b(s)}]
|b(s)|

)
,

where b(s) is a circular region centered at s ∈ D and N(B) is the
number of events that occur in a region B of area |B|.

Assume the intensity belongs to a parametric family {λ (s;θ) : θ ∈
Θ}.

Let s1,s2, . . . ,sn represent the true locations of the n events that occur
in D. Assume the geocoding is complete.
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If we observe locations without error, the likelihood function is pro-
portional to

L(θ ;s1, . . . ,sn) = exp
{
−
∫

D
λ (s;θ)ds

}{ n

∏
i=1

λ (si;θ)

}
.

Suppose we don’t observe s1, . . . ,sn but instead observe perturbed
versions u1, . . . ,un. Also suppose that conditional on s1, . . . ,sn, the
ui are independent and each has pdf g(u|si,xi,β ,τ) where xi is a
vector of observed covariates with associated parameters β , and τ is
a vector of dispersion parameters.
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Then the unconditional joint likelihood of the observed locations is
proportional to

LE(θ ,β ,τ;u1, . . .un) = exp
{
−
∫

D
λ (s;θ)ds

}
×

n

∏
i=1

∫
D

λ (si;θ)g(ui|si,xi,β ,τ)dsi.

We have found that the error disperson standard deviation needs to
be of magnitude at least 5% of the dimensions of the study region in
order for it to be worthwhile to account for geocoding errors.
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Incompleteness of street geocoding

In addition to measurement errors, another practical reality of geocod-
ing is incompleteness.

Two main features of the incompleteness:

• Relationship to local population density

• Spatial clustering of the failure to geocode

• However, we do generally have coarse geographic information
(e.g. Zip codes) for the addresses that fail to geocode
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Incompleteness versus population size

Geocoding success in the National Health Interview Survey (NHIS)
(Kravets and Hadden, 2006):

Pop. size # counties # households % geocoded
≥ 1 million 300 138,281 95.1
250,000-999,999 194 48,992 90.4
50,000-249,999 106 23,379 84.8
20,000-49,999 76 17,625 78.1
2,500-19,999 110 19,805 64.4
< 2,500 48 4,339 43.7
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Spatial clustering of the failure to geocode
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Effect of clustering of geocoding failure on detection
of disease clustering

Empirical powers of size-.05 Cuzick-Edwards test for spatial clus-
tering of disease cases (based on a rural subset of 998 addresses):

π = 0.01 π = 0.04
Data set k r = 1000 r = 3333 r = 1000 r = 3333
Complete — 0.786 0.961 0.999 1.000
Geocoded 1 0.593 0.856 0.932 0.980
Geocoded 2 0.408 0.600 0.868 0.979
Geocoded 3 0.266 0.408 0.668 0.873

Here π is the disease case prevalence of a Gaussian random field thresh-
old model, r is the correlation range, k is the case/control odds ratio of
geocoding failure.
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Nonparametric intensity estimation

• We wish to exploit the coarsened data (Zip codes) to improve
nonparametric (kernel-based) estimation of the intensity.

• A generic kernel intensity estimator:

λ̃ (s) =
n

∑
i=1

Kh(s− si)≡
n

∑
i=1

h−1K(h−1‖s− si‖)

where K(·) is a univariate symmetric kernel function and h is
the bandwidth

• Used routinely for EDA of spatial point patterns (to look for
peaks and troughs, associations with maps of covariates, etc.)

• λ̃ (s) is asymptotically unbiased if geocoding is complete
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Additional notation

• For each s ∈ D, define a geocoding indicator random variable

G(s) =
{

1, if an event at site s geocodes
0, otherwise.

• Geocoding propensity function:

φ(s) = P{G(s) = 1}.

∗ φ(s)≡ 1.0 ⇒ Geocoding complete, no geographic bias

∗ φ(s) ≡ c < 1.0 ⇒ Geocoding incomplete, λ̃ (s) biased
but not geographically so

∗ φ(s) 6= c ⇒ Geocoding incomplete, λ̃ (s) geographically
biased
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Relationship to thinned processes

• Let gi be the observed value of G(si), and define G = {i : gi =
1}

• The events that geocode, i.e. {si : i ∈ G }, constitute a real-
ization of a “thinned” point process, or more specifically an
independently φ(s)-thinned process

• Let λT (s) denote the intensity function for the thinned process
associated with the incompletely geocoded data

• Key result:
λT (s) = φ(s)λ (s)
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Kernel intensity estimation for a thinned process

• Consider two modified kernel intensity estimators (assuming
φ(·) is known):

λ̄ (s) = {φ(s)}−1
n

∑
i=1

i∈G

Kh(s− si)

and

λ̂ (s) =
n

∑
i=1

i∈G

{φ(si)}−1Kh(s− si)

• λ̂ (s) has better properties, so we consider it exclusively
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• Although φ(·) is generally unknown in practice, it can be esti-
mated using the coarsened data, and the resulting estimate can
be substituted into λ̂ (s) to yield a coarsened-data estimator

λ̂C(s) =
n

∑
i=1

i∈G

{φ̂(si)}−1Kh(s− si)
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Carroll County example

• Incomplete-data and coarsened-data kernel intensity estimates
were computed

• Complete-data estimate was also computed, using geocodes
obtained via aerial orthophotographs

• Complete-data estimate serves as a benchmark for comparing
the other two estimates
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Proportion of Carroll County addresses that geocoded, by Zip code:

Zip code Number of addresses Proportion geocoded
50050 3 0.667
50058 817 0.889
51401 5150 0.851
51430 359 0.738
51433 3 0.000
51436 363 0.766
51440 200 0.715
51443 829 0.779
51444 110 0.173
51449 29 0.448
51451 93 0.312
51453 17 0.529
51455 918 0.773
51459 41 0.293
51462 16 0.688
51463 298 0.591
51466 4 0.500
51467 48 0.354
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Pointwise ratio of incomplete-data kernel intensity estimate (left panel)
and coarsened-data kernel intensity estimate (right panel) to complete-
data kernel intensity estimate (the integrated MSE of the latter is less
than 50% that of the former):
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Conclusions and other developments

• Incomplete geocoding can be successfully dealt with using a
coarsened-data approach

• Coarsened-data kernel intensity estimator offers substantial
improvements in inferences

• We’ve also developed a coarsened-data maximum likelihood
approach for parametric intensity estimation; if the data are
coarsened at random then the likelihood is proportional to

LIG(θ ;X)= exp
{
−
∫

D
λ (s;θ)ds

}{
∏
i∈G

λ (si;θ)

}{
∏
i/∈G

∫
Zi

λ (s;θ)ds

}

(Xi = si if gi = 1, and Xi = Zi otherwise).
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• We’ve also developed coarsened-data methods (both nonpara-
metric and likelihood-based) for estimation of spatial variation
in log relative risk. The nonparametric estimator, e.g., is

ρ̂C(s) = log

(
λ̂C1(s)
λ̂C0(s)

)
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