## Theorem 6.2(for monotone missing data): call the functions of theorem 5.8 (a)(b)(c) test.CI.inter<-function(data, covariate, i, j, alpha){ data <- as.matrix(data) Z <- as.matrix(covariate) N <- nrow(data[!is.na(data[,i]),]) #Ni n <- ncol(data) m <- ncol(Z) ## theorem 5.8(c) partial <- partial.inter(cov.cor(REMLE.cov(data, Z, n-1, REMLE=TRUE))) r <- partial[i,j] stat <- sqrt((N-m-i+j)/(1-r^2))*abs(r) df <- N-m-i+j pvalue <- 2*(1-pt(stat, df)) V <- (1/2)*log((1+r)/(1-r)) CI <- c(tanh(V+qnorm(alpha/2)/sqrt(N-m-i+j-1)), tanh(V-qnorm(alpha/2)/sqrt(N-m-i+j-1))) list(stat=stat, pvalue=pvalue, CI=CI) } ## Conclusion flag.ia<-function(data, covariate, alpha){ n <- ncol(data) r.test <- matrix(rep(0, n*n), nrow = n) r.CI <- matrix(rep(0, n*n), nrow = n) for(i in 2:n){ for(j in 1:(i-1)){ pvalue <- test.CI.inter(data, covariate, i, j, alpha)$pvalue if(pvalue < 0.05) r.test[i, j] <- "r" else r.test[i, j] <- "a" CI <- test.CI.inter(data, covariate, i, j, alpha)$CI if(0 > CI[1] && 0 < CI[2]) r.CI[i, j] <- "a" else r.CI[i, j] <- "r" } } list(flag.ia.test = r.test, flag.ia.CI = r.CI) } #################################################################################### ## the following functions are of theorem 5.8 (a)(b)(c) ###############Theorem 5.8 (a)############### REMLE.phi.delta<-function(data, covariate, p, REMLE){ data <- as.matrix(data) Z <- as.matrix(covariate) n <- ncol(data) m <- ncol(Z) V <- matrix(rep(0,n*n), nrow = n) if(length(p)==1) p <- rep(0:p, c(rep(1,p),(n-p))) for(i in 1:n){ Z <- as.matrix(Z[!is.na(data[,i]),]) data <- data[!is.na(data[,i]),] N <- nrow(data) if(m==1) A <- cov(matrix(data[ ,(1:i)], ncol=i))*(N-m)/N else{ Y <- NULL for(j in 1:N) Y <- cbind(Y, t(data[j,1:i])) Y <- t(Y) ## p.147 beta.bar <- kronecker(solve(t(Z)%*%Z)%*%t(Z), diag(i))%*%Y A <- matrix(rep(0,i*i), nrow = i) for(s in 1:N){ M <- matrix(data[s,1:i], nr=i)-kronecker(matrix(Z[s,], nr=1), diag(i))%*%beta.bar A <- A + M %*% t(M) } A <- A/N } if(REMLE==TRUE) cov <- (N/(N-m))*A else cov <- A ## innovation variances(2.18) for i=1 if(i==1) V[i,i] <- cov else{ ## innovation variances(2.18) V[i,i] <- cov[i,i]-t(cov[(i-min(p[i],(i-1))):(i-1), i]) %*% solve(cov[(i-min(p[i],(i-1))):(i-1), (i-min(p[i],(i-1))):(i-1)]) %*% cov[(i-min(p[i],(i-1))):(i-1), i] ## autoregressive coefficients(2.19) phi <- as.vector(t(cov[(i-min(p[i],(i-1))):(i-1),i]) %*% solve(cov[(i-min(p[i],(i-1))):(i-1),(i-min(p[i],(i-1))):(i-1)])) for(j in (i-min(p[i],(i-1))):(i-1)) V[i,j] <- phi[j+1-(i-min(p[i],(i-1)))] } } V } ###############Theorem 5.8 (b)############### ## calculate the correlations below and above the main diagonals cov.cor<-function(V){ for(i in 2: nrow(V)){ for(j in 1:(i-1)) V[j,i] <- V[i,j] <- V[i,j]/sqrt(V[i,i]*V[j,j]) } V } REMLE.cov<-function(data, covariate, p, REMLE){ n <- ncol(data) T <- -REMLE.phi.delta(data, covariate, p, REMLE=REMLE) D <- matrix(rep(0,n*n), nrow = n) diag(D) <- -diag(T) diag(T) <- rep(1,n) solve(T) %*% D %*% solve(t(T)) } ###############Theorem 5.8 (c)############### ## inverse inv <- function(cov){ solve(cov) } ## intervenor-adjusted partial correlation ## recursion formula for partial correlations in (2.6) recur.pcor<-function(index1, index2, index3, V){ index1 <- index1 index2 <- index2 index3 <- index3 index <- c(index1, index2, index3) if(length(index3)==1){ rxy.z <- (V[index[1], index[2]]-V[index[1], index[3]]*V[index[2], index[3]])/ (sqrt(1-V[index[1], index[3]]^2)*sqrt(1-V[index[2], index[3]]^2)) return(rxy.z) } else{ index1 <- index[1] index2 <- index[2] index30 <- index[3] index3c <- index[-c(1,2,3)] rxy.zc <- recur.pcor(index1, index2, index3c, V) rxz0.zc <- recur.pcor(index1,index30,index3c, V) ryz0.zc <- recur.pcor(index2,index30,index3c, V) rxy.z <- (rxy.zc - rxz0.zc*ryz0.zc)/(sqrt(1-rxz0.zc^2)*sqrt(1-ryz0.zc^2)) return(rxy.z) } } partial.inter<-function(cor){ V <- cor n <- ncol(cor) m <- n-2 for(k in 1:m){ if(k==m) V[1, n] <- V[n, 1] <- recur.pcor(1, n, c(2:(n-1)), cor) else diag(V[1:(n-k-1), (k+2):n]) <- diag(V[(k+2):n, 1:(n-k-1)]) <- sapply(1:(m+1-k), function(i) if(k==1) recur.pcor(i, i+k+1, i+1, cor) else recur.pcor(i, i+k+1, c((i+1):(i+k)), cor)) } V }